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Chapter 1

Preliminaries

The theory of fluid dynamics rests on the developments in some greater disciplines such as mathematics and
physics, especially mechanics. In this chapter, let us summarize and revise some of these topics.

1.1 Newtonian mechanics

While it is not possible to do justice to Newtonian mechanics here, we present the basic tenets. 1 Newtonian
mechanics, at its core, describes physical laws governing the motion of point material particles. Consider a
point material object of mass m moving through empty space. Let us say that the objects location is given by
x(t) as a function of time t. The velocity of the body is v(t) = dx/dt. The three laws of motion according to
Newtonian mechanics are:

1. First law: In an inertial reference frame, every body continues in its state of rest or uniform motion
until and unless acted upon by an external unbalanced force. Essentially, this law defines the notion of
an inertial reference frame, i.e. one in which a free body moves uniformly.

2. Second law: When an external unbalanced force, F , acts on a body it must equal the rate of change
of momentum of this body. The momentum (also known as the linear momentum) of this point mass is
defined as p = mv. Therefore, the mathematical statement of the second law is:

F =
dp

dt
. (1.1)

Noting that the acceleration of the particle, a = dv/dt =, if the mass of the body does not change with
time, then this law is also written as F = ma. This law describes the motion of the particle.

3. Third law: Every action has an equal and opposite reaction. In other words, if a body A exerts a force
F on a body B, then the body B must exert a force of −F on body A. This law describes the interaction
between particles.

As a consequence of Newton’s laws of motion for point particles, it is possible to derive the following “con-
servation laws” of momentum and angular momentum for extended deformable bodies. A common terminology
used in physics is the moment of a quantity, which is obtained by making a cross product of the position vector
x of a point particle with that quantity. Suppose that an extended material object at time t occupies a region
of space given by Ω. Then its total momentum is obtained by breaking it up into infinitesimal pieces of mass
dm, determining the momentum of these individual pieces, and summing the momentum. Mathematically, this
amounts to integrating as

p =

∫

Ω

dm v(x, t), (1.2)

where v is the velocity of the piece at position x ∈ Ω. The total mass m of the body is simply m =
∫
Ω
dm. The

moment of momentum , also known as the angular momentum l, is then

l =

∫

Ω

dm x× v. (1.3)

1For more detailed treatments, refer to a book on undergraduate mechanics, e.g., Halliday and Resnick, Physics - I, or, if you
prefer the economy of Soviet authors, I. E. Irodov, Fundamental Laws of Mechanics.
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These conservation laws invoke the “centre of mass” xc of this object, defined as

xc =

∫
Ω
dm x∫
Ω
dm

=
1

m

∫

Ω

dm x. (1.4)

Suppose that the external forces Fi, i = 1, 2, . . . , n act on this object at locations xi. The net torque τ on this
body is the moment of the external forces,

τ =

n∑

i=1

xi × Fi. (1.5)

So long as the object does not exchange material with anything outside it, the laws of conservation state
that:

1. Conservation of (linear) momentum: The rate of change of total momentum must equal the total
external unbalanced force on the object, i.e.

dp

dt
=

n∑

i=1

Fi. (1.6)

Noting the relation between p and xc, this law is also stated as

m
d2xc

dt2
=

n∑

i=1

Fi, (1.7)

which means that the mass times the acceleration of the centre of mass must equal the external unbalanced
force.

2. Conservation of angular momentum: The rate of change of angular momentum must equal the net
torque on the body. Mathematically,

dl

dt
= τ . (1.8)

While the momentum and angular momentum are not constants of motion, here the term “conservation law” is
used in the sense that it is possible to keep an account of these quantities in relation to their respective sources.

1.2 Units and dimensions

Units are used to describe the values of physical quantities. For example, Dr. Shreyas Mandre is 170 cm tall,
weigh 10 stones and consume about 100 Watts when resting. The choice of the unit is arbitrary, as reflected in
the plethora of units available for the same quantity, e.g. 170 cm ≈ 68 inches ≈ 1.8 ×10−16 light-years. The SI
system is popular for the purpose of standardization (and that purpose alone).

The fundamental nature of a quantity attributes it with a unique dimension. Example of dimensions are
length L, mass M , time T , force F , etc. Many different units are associated with each dimension, as described
above. The basic rules for analysis based on dimensions are as follows. The dimension of product of physical
quantities is the product of the dimensions of the individual multiplicands. It is an error to add quantities of
different dimensions, i.e. lengths may be added with lengths but not mass. For an equation in physics to be
dimensionally consistent, the dimensions on both sides of the equation must be identical.

Dimensions of quantities are not necessarily independent of each other. For example, the dimensions of
volume L3 depend on the dimensions of length. This dependence is best expressed in systems of dimensions.
In the MLT system, the dimensions M , L and T are considered basic, from which all other dimensions are
derived, e.g. F = ML/T 2. There is some arbitrariness in constructing systems of dimensions, for example,
equally valid is the FLT system where M = FT 2/L is a derived dimension.

Exercise: Construct a ρV L system, where ρ is the dimension of density and V of velocity. Express the
dimensions of mass and time in terms of ρ, V and L.

Exercise: What are the dimensions of p, µ and ν?

This arbitrariness in the nature of physical quantities underlies some of the most powerful theoretical tools
in physics. It was on the basis of such considerations that Sir G. I. Taylor estimated the yield of the atomic
bomb, a heavily guarded American secret at the time, from publicly available images. Ignore dimensions at
your own peril!
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1.3 Cartesian tensors

Vectors and tensors offer a compact representation to tackle the large number of variables whilst accounting
for the relationship between them. Vectors are quantities that, in the colloquial sense, have a magnitude and
a direction. Mathematically, vectors are elements of R3, where the components commonly represent Cartesian
components. Tensors are generalization of vectors which have more than three components in 3-dimensions.
An nth rank tensor has 3n components in 3 dimensions. In this way, a vector is a first-rank tensor. Examples
of second rank tensors include moment of inertia of a solid body. Here the nine Cartesian components of the
moment-of-inertia tensor are

Ixx =

∫

V

x2 dm, Iyy =

∫

V

y2 dm, Izz =

∫

V

z2 dm,

Iyx =Ixy =

∫

V

xy dm, Izy =Iyz =

∫

V

yz dm, Izx =Ixz =

∫

V

xz dm,

where dm represents an infinitesimal mass element spanning the extent of the body V .

Tensors of rank zero are scalars.

Two different notations are available to represent vector and tensor expressions, they are called the vector
notation and the index notation. Depending on the circumstance, one notation may be preferred to the other
either for clarity or compactness.

We will use boldface symbols to represent vectors and tensors in vector notation. In this notation, it is
crucial to declare the rank of the tensor a symbol represents, e.g., let u represent first-rank velocity tensor, and
let T represent the second rank stress tensor. The operations on these symbols are understood as a matter of
convention, e.g., a + b is the sum of two tensors a and b of equal rank. Vector notation is not equipped to
unambiguously represent dot products and cross products, but it is denoted as a · b and a × b, respectively,
when no ambiguity exists. Examples will be abundant in the rest of the notes. The advantage of this notation
is that it treats tensors in their abstraction without reference to any specific coordinate system.

The index notation explicitly invokes (for this module Cartesian) coordinate system. The Cartesian coordi-
nates are themselves written as x1 = x, x2 = y and x3 = z. Let ê1, ê2 and ê3 be the unit vectors along x1,
x2 and x3 coordinates, respectively. Then the components u1, u2 and u3 of the tensor a first rank tensor (i.e.,
a vector) u are written as ui, where the index i ranges from 1 to 3. The components of a second rank tensor
are represented using two indices, e.g., the components of the moment-of-inertia tensor are represented as Iij ,
where

Iij =

∫

V

xixj dm, and i and j both independently range from 1 to 3.

It is customary to omit the range of the indices in this notation. In general, nth rank tensors have n indices.

The summation convention: Expressions, such as the dot product between two vectors are written as
a sum in index notation, e.g.

a · b = a1b1 + a2b2 + a3b3 =

3∑

i=1

aibi. (1.9)

As a matter of convention due to Einstein, it is customary to also omit the summation sign over an index which
appears twice in any product. Hence, a · b = aibi, with an implied sum over i from 1 to 3. When a sum on an
index appearing twice is not implied, this must be stated explicitly. Similarly, whether a sum is implied on an
index that repeats more than two times must be explicitly stated.

Two special tensors: Let us introduce two special and basic tensors. The first is called the Kronecker
delta, defined as

δij =

{
0 for i ̸= j

1 for i = j
. (1.10)

The second is the third-rank alternating tensor, also known as the Levi-Civita, which is defined as

ϵijk =





0 if i = j, j = k or i = k,

1 for (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1 for (i, j, k) = (1, 3, 2), (2, 1, 3) or (3, 2, 1).

(1.11)
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Tensor algebra: Using these rules, the notation for tensor algebra is as follows. Here w is a scalar, a, b
and c are vectors, T , S, A and B are second rank tensors.

Vector notation Index notation Tensorial rank
Sum of vectors: c = a+ b ci = ai + bi 1
Dot product of vectors: w = a · b w = aibi 0
Dot product of tensors: T = A ·B Tij = AikBkj 2
Outer product of vectors A = ab Aij = aibj 2
Outer product of tensors: AB AijBkm 4
Contraction: tr(A) Aii 0
Scalar triple product: a · (b× c) ϵijkaibjck 0
Vector triple product: a× (b× c) ϵijkϵkmnajbmcn 1

A combination of the above operations is a contraction between two second rank tensors denoted by A : B
defined as AikBki. Note that A : B = tr(A ·B).

A symmetric second-rank tensor is on that satisfies Sij = Sji for all combinations of i and j. An anti-
symmetric one is that satisfies Aij = −Aji.

Components of vectors transform in a predictable way when represented in a different coordinate system.
In other words, if a vector u has components ui, i.e. u = uiêi (note: sum implied), then the components of
u change when the basis vectors change to ê′i. Similarly, tensor components also change in a predictable way
under coordinate transformations. This can be seen using the representation of tensors in terms of the Cartesian
basis vectors as T = Tij êiêj (sum implied). Note that êiêj is the outer product between êi and êj , and just
like êi is a unit vector, the term êiêj is one of the nine unit second-rank tensors.

The reason to introduce the Kronecker delta and the alternating tensor are that they are special second
and third rank tensors. They are the so-called “unit isotropic” tensors, i.e. the Cartesian components of these
tensors do not change under coordinate transformations. (We shall take it for granted here without proof.) By
extension, any algebraic expressions constructed using these unit isotropic tensors are also isotropic. In fact,
the most general second, third, and fourth rank isotropic tensors are

I2ij = λδij (1.12a)

I3ijk = λϵijk (1.12b)

I4ijkl = λδijδkl + αδikδjl + βδilδjk, (1.12c)

where λ, α and β are arbitrary scalars.

The so-called ϵ− δ identity is useful in simplifying the inner products of two alternating tensors as

ϵijkϵkmn = δimδjn − δinδjm. (1.13)

Here note that the left hand side is an isotropic fourth-rank tensor, which is expressed on the right-hand side
as a special case of the most general isotropic fourth-rank tensor.

1.4 Tensor Calculus

Tensorial notation also aids in representing multivariate calculus of fields. Here are the basic elements in terms of
scalar field ϕ(x, t), vector field u(x, t) and tensor fields T (x, t). A special notation called the comma notation is
used the denote derivatives with respect to Cartesian coordinates, ∂ϕ/∂xi = ϕ,i, i.e. an index following a comma
in the subscript of a symbol implies differentiation with respect to the corresponding Cartesian coordinate.

Vector notation Index notation Tensorial rank

Gradient of a scalar: ∇ϕ
∂ϕ

∂xi
= ϕ,i 1

Divergence of a vector: ∇ · u ∂ui
∂xi

= ui,i 0

Gradient of a vector: ∇u
∂ui
∂xj

= ui,j 2

Divergence of a tensor: ∇ · T ∂Tij
∂xj

= Tij,j 1

Curl of a vector: ∇× u ϵijk
∂uk
∂xj

= ϵijkuk,j 1
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Results in integral calculus may also be condensed using the index notation. Consider a volume Ω in space,
with its unit normal oriented outwards denoted by n̂. The divergence theorem expressed in vector and index
notation is

∫

∂Ω

u · n̂ dA =

∫

Ω

∇ · u dΩ or

∫

∂Ω

uini dA =

∫

Ω

ui,i dΩ, (1.14)

where ∂Ω represents the bounding surface of Ω and dA is the infinitesimal area element on it. A generalization
of this theorem for second-rank tensor is

∫

∂Ω

T · n̂ dA =

∫

Ω

∇ · T dΩ or

∫

∂Ω

Tijnj dA =

∫

Ω

Tij,j dΩ. (1.15)

Stokes theorem applies to closed curves C, the unit tangent to it t̂, the surface it encloses S and the unit normal
to the surface n̂. For vectors, it reads

∫

C

u · t̂ ds =
∫

S

(∇× u) · n̂ dA or

∫

C

uiti ds =

∫

S

ϵijkukjni dA, (1.16)

where ds is the infinitesimal arc-length element.
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Chapter 2

Mathematical Modelling of Fluid Flow

In this chapter, we will derive the mathematical model governing the motion of fluids. In summary, these will
be the Navier-Stokes equations, but on the way we will encounter the Eulerian and the Lagrangian descriptions
of fluid motion, the deformation of infinitesimal fluid particles, Cauchy’s notion of stress and his equation for
motion of continuum, Euler’s equations for motion of an ideal fluid, etc. We begin with the definition of a fluid.

2.1 Definition of a fluid

Definition

Fluid: A continuum substance that cannot withstand shear stress without continually deforming.

The

material
Displacement

Applied traction

Figure 2.1: The deformation of a mate-
rial under a constant applied traction.

Consider a thin layer of material sandwiched between two plane
walls, as shown in Figure 2.1. Under the action of the applied traction,
σ, each layer of the material slides proportional to the distance from
the lower wall, which is held fixed. The displacement is given by
ξ = γ(t)y. The shear in this scenario is dξ/dy = γ(t). At long times,
γ(t) approaches a constant for a solid. But for a fluid, γ(t) keeps
increasing at a constant rate, i.e., γ(t) = γ̇t, where γ̇ is the rate of
shear.

There are other definitions of a fluid that, while appropriate to be
used at more elementary treatments of fluid dynamics, are inadequate
for the purposes of deriving mathematical models for describing their
behaviour. One such definition is that a fluid is a substance that assumes the shape of its container. This
definition is inadequate for our purpose because there is no mention of gravity, the driving force that makes
some of those substances, namely liquids, conform to the shapes of their containers. But even for gases, this
definition does not furnish the defining element instrumental in deriving the governing equations for fluid flow
– the internal stress experienced by elements of the fluid and the resulting deformation.

While our definition addresses some of the shortcomings of the more elementary definitions, it has left some
terms undefined. For instance, what is a continuum substance? What is a shear stress? How does one quantify
continual deformation? Also note that the definition does not constrain the magnitudes of the shear stress or
that of the deformation, nor does it specify any relation between the two.

Based on this guiding definition, we derive mathematical representations of the laws of conservation of mass,
momentum and angular momentum in §2.8, §2.9 and §2.10, respectively. The concepts of deformation rate
and stress will emerge in the process. A fluid is any substance that obeys the assumptions that go into the
derivations of these mathematical representations. On the one hand, such an exercise rigorously constrains the
materials to which the governing equations could be applied. And on the other hand it broadens the scope to
include materials that are not commonly classified as fluids but whose mechanics are governed by the equations
we derive because they satisfy the underlying assumptions. Understanding the significance of the assumptions
that form the basis of the derviation of the governing equations is the objective of this chapter.

15
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Figure 2.2: Left: An example where continuum mechanics is unlikely to work - a molecular dynamics simulation
of a desalination membrane, where water molecules flow through a carbon nanotube (see www.micronanoflows.
ac.uk. Right: The International Space Station (source: www.wikipedia.org/wiki/International_Space_

Station.

2.2 Fluids in Continuum Mechanics

Matter on earth is made up of atoms and molecules, each obeying classical or quantum laws of physics. When
dealing with a large collection of molecules, the granularity of molecular composition somehow is lost and/or
becomes irrelevant. Properties of matter can then be considered to vary smoothly with location within the
material. The emergence of thermodynamics is an example of this. Similarly, when describing motion of
macroscopic matter on length scales much larger than molecular scales, it becomes possible to consider the
material as a infinitely divisible continuum. The theory of mechanics that arises out of such a consideration is
called continuum mechanics.

The continuum approach is accurate when the mean free path ℓ, which is the length a molecule of the
medium travels between collisions with other molecules, is much smaller than the dimensions of the flow L, so
that ℓ/L ≪ 1 (the continuum limit takes ℓ/L → 0). Note that ℓ/L is a ‘dimensionless number or parameter’,
whose value does not depend on the system of units used. When ℓ/L ≈ 1 or ℓ ≫ L, microscopic methods
(molecular dynamics for liquids and kinetic theory for gases) are required.

It is worthwhile to ponder briefly about cases where continuum hypothesis fails. Here are two situations:

1. Flow of water through a carbon nanotube: Nanotubes are modern materials consisting of a tube of
diameter as small as 0.4 nm. Figure 2.2 shows the use of nanotubes made out of carbon for desalinating
water. The basic idea is that while water can flow through the tube, the impurities do not. In this case,
the water near the centre of the tube flows faster compared to that near the tube walls, where friction
impedes the flow. Thus, the water speed changes over a distance compared to the diameter of the tube,
so L ≈ 0.4 nm. The molecular mean-free path is about 0.25 nm. In this case, ℓ/L ≈ 0.25/0.4 = 0.625,
which is not small. Therefore, the continuum hypothesis is likely to fail.

2. Motion of the International Space Station (ISS): The ISS is about 79 m × 109 m, say approximately
L = 100 m across and orbits the earth at an altitude of 400 km. The atmosphere there is so rarified that
the mean free path of gas molecules is ℓ ≈ 20 km. The ratio ℓ/L = 20 × 103/100 = 200 is clearly not
small, so the surrounding gas cannot be treated as a continuum.

In summary, the continuum approximation of the fluid may fail because (i) the length-scale over which the flow
varies is too small, or (ii) the mean free path of the fluid molecules is too large. Both these cases are adequately
encapsulated by the ratio ℓ/L.

In day-to-day situation, e.g. flow of water through ordinary pipes, continuum approximation does apply.
In that case, every point in space is assigned physical properties such as density, pressure, velocity, stress, etc.
Continuous functions of space and time, called fields, are used to represent these physical variables.

2.3 Material properties of fluids

There are five main properties that will be important for us in this module.

www.micronanoflows.ac.uk
www.micronanoflows.ac.uk
www.wikipedia.org/wiki/International_Space_Station
www.wikipedia.org/wiki/International_Space_Station
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1. Density (ρ): The mass of the fluid per unit volume. Air has a density of about 1.2 kg/m3 and water of
1000 kg/m3. Physically, the density of a fluid is determined by its thermodynamic state, and could thus
change with pressure and temperature, for instance. If the conditions are such that the density of the
fluid does not change appreciably in the flow then such a flow is termed “incompressible”. Under ordinary
circumstances, flows of air and water are incompressible. For flow of air around a jet plane, the flow is
compressible. And it is certainly so for flow around a supersonic plane.

2. Pressure (p): The force a fluid exerts on a wall per unit area. At sea level, air exerts a pressure of about
105 N/m2. In SI system, N/m2 = Pa, a Pascal. Other common units of pressure, especially in atmospheric
sciences, are the bar, 1 bar = 105 Pa, and the atmosphere, 1 atm = 101325 Pa. Pressure is also measured
in terms of a height of a fluid column, where the fluid is commonly but not necessarily either water or
mercury. Normal human blood pressure is purported to range from 80 to 120 mm of mercury.

3. Dynamic Viscosity (µ): Also known as Newtonian viscosity. It represents the resistance of a fluid to
shear. The viscosity is the ratio of the traction applied to the shear rate generated in steady state. In the
terminology used in Figure 2.1, µ = σ/γ̇. Dynamic viscosity has the SI units of Ns/m2 or, equivalently,
Pa s. An “ideal” fluid or an “inviscid” fluid is one with zero viscosity.

4. Kinematic viscosity (ν): The kinematic viscosity is the dynamic viscosity divided by fluid density, i.e.
ν = µ/ρ. In the SI system, it has units of m2/s (note the absence of kg in the units, hence the epithet
kinematic).

5. Surface tension (σ): The surface of a liquid behaves like a stretched membrane. The tension in this
“membrane”, measured as force per unit length, is called surface tension. Surface tension has SI units of
N/m.

The conditions termed as incompressible and inviscid or ideal are idealizations of real conditions. They are
never exactly realized.

2.4 Lagrangian and Eulerian Descriptions

Watch the video on ‘Lagrangian and Eulerian descriptions of fluid flow’ narrated by Prof. John Lumley of
Cornell University from the National Committee for Fluid Mechanics. YouTube link: www.youtube.com/

watch?v=mdN8OOkx2ko, duration: 27 mins.

The objective in developing the continuum theory of fluids is to decompose the fluid into an infinite number
of infinitesimal fluid elements and impose Newton’s laws of motion on each one of them. To do so, it is necessary
to label each infinitesimal element of a fluid. There are two common approaches historically employed for doing
so. These approaches are called the Eulerian and the Lagrangian descriptions of fluid flow.

2.4.1 Lagrangian description

The Lagrangian description seeks to label and track infinitesimal material volumes of fluid. Their boundaries
move with the average speed of the molecules composing the boundaries (only possible in the continuum limit,
when there are a large number of molecules on the boundary). Consequently, these volumes always contains
the same amount of mass within them. Intrinsic1 material properties are attributed to the volume by virtue of
the material contained in the volume. For example, the velocity, the acceleration, the density, the temperature,
the pressure, the concentration of any dissolved species could be attributed to the material volumes. These
infinitesimal fluid volumes are also called (Lagrangian) fluid particles or fluid parcels.

A convenient label is the position of an infinitesimal fluid volume, Xj , at some reference time t0. In the
Lagrangian description, the fluid velocity is then given by the fields Ui(Xj , t). This expression stands for the
velocity of the Lagrangian fluid particle at time t, which was at position Xj at time t0. Similar interpretation
is applied to the density R(Xj , t), acceleration Ai(Xj , t), pressure P (Xj , t), etc. As an informal convention, we
will used capital letters to denote Lagrangian fields.

Caution: It is a common misunderstanding that the fluid inside the material volume is composed of the same
material throughout the flow. This is not true. Instead, the correct statement, as mentioned earlier, is that the

1Here intrinsic quantities are those which do not depend on the total amount of material in the volume. Examples of intrinsic
quantities are pressure, temperature, density, as opposed to extrinsic quantities such as mass, volume, etc, which are proportional
to the mass of material in the volume.

www.youtube.com/watch?v=mdN8OOkx2ko
www.youtube.com/watch?v=mdN8OOkx2ko
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Figure 2.3: The motion and deformation of a Lagrangian fluid volume in a flow. The black curves denote
streamlines of the flow spiralling outwards. The square coloured patch labelled Mt=0 shows the Lagrangian
fluid volume at t = 0. The Lagrangian volume at t = 2 is shown as the deformed coloured patch labelled Mt=2.
Blue arrows show the displacement of Lagrangian fluid particles forming the corners of the Mt=0. The colour
of the sub-patches is preserved between Mt=0 and Mt=2.

fluid inside the volume always contains the same amount of mass. Molecules composing the fluid move in and
out of the volume such that no net mass leaves or enters the volume.

2.4.2 Eulerian description

The Eulerian description seeks to label the fluid particles by their current location in space. A convenient and
common label are the coordinates of the points in space. All physical properties of the fluid are then described
as fields over these labels, i.e., the Cartesian coordinates, xj . For example, the velocity of the fluid is described
as a field ui(xj , t), which is interpreted as the velocity of the Lagrangian fluid particle that is at location xj at
time t. Note that even in the Eulerian description, physical quantities are attributed to the fluid elements and
not to the space. Similarly, the density is denoted ρ(xj , t), the pressure as p(xj , t), the acceleration as ai(xj , t),
the stress as Tij(xk, t), etc.

Definition: A Steady Eulerian Field

A steady field is one for which ∂/∂t = 0. One of the advantages of the Eulerian description of fluid flow is that
in many cases and in properly chosen reference frames, the resulting fields of velocity and pressure are steady.
This significantly simplifies the analysis of such flows.

2.4.3 Eulerian versus Lagrangian descriptions

The two descriptions are invoked in fluid dynamics because they simplify different stages of the analysis. New-
ton’s laws of motion are formulated in the Lagrangian description. Later, we will write the acceleration of
Lagrangian particles in terms of the forces they experience. In this formulation, we will need to represent the
force exerted by the neighbouring fluid particle as it pushes against the one under consideration, or slides past
it. This will require us to track the neighbouring fluid particles as well. Now, the nature of fluid flows is such
that the Lagrangian fluid volumes deform significantly with time and so do their neighbours, see Figure 2.3.

The Eulerian description does not suffer from the deformation of volumes. The volume remains fixed because
we have defined it to be so. Neighbouring particles also remain in place without deforming. However, the laws
of mechanics have been formulated in Lagrangian description. Whilst in the Eulerian description one sits at a
fixed position and watches the flow pass (like standing at the bank of a river), in the Lagrangian description we
‘follow the fluid’ (as in a boat flowing with the river or on a weather balloon).

To bridge this gap, we use an Eulerian-Lagrangian map. The most basic element of the map is the trans-
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formation between the labels. Given the Eulerian labels x and the Eulerian velocity field u(x, t), the position
of Lagrangian fluid particles labeled X may be determined by solving for F (X, t)

∂F

∂t

∣∣∣∣
fixed X

= u (F (X, t), t) , (2.1)

with F (X, t0) = X. In other words, the rate of change of position of a Lagrangian fluid particle is simply the
Eulerian velocity at the current location of the fluid particle.

2.4.4 The Material Derivative and Acceleration

There is a section on ‘Material Derivative applied to the concentration of a pollutant in a river’ starting at 12:00
mins in the video on ‘Lagrangian and Eulerian descriptions of fluid flow’ by Prof. John Lumley of Cornell
University from the National Committee for Fluid Mechanics. YouTube link: www.youtube.com/watch?v=

mdN8OOkx2ko, starting 12:00 mins to the end.

We now use this relation to develop the most common Eulerian to Lagrangian conversion of an operation,
differentiation with time. For a generic intrinsic fluid property c(x, t) of arbitrary tensorial rank, the partial
derivative with time ∂c/∂t merely represents the rate of change of c at the Eulerian location x. It does not
account for the fact that at an infinitesimally later time, a different fluid particle now occupies the location x.
Since most physical laws are formulated in terms of the properties of the Lagrangian fluid particle, it is useful
to instead derive an expression for the rate of change of c following the fluid particle.

To do so, note that c (Fi(X, t), t) is the property c evaluated at the position Fi of the Lagrangian particle
labelled by X2. The location of the particle itself changes with time. Therefore, the rate of change of c following
the fluid particle is

∂c (Fi(X, t), t)

∂t

∣∣∣∣
fixed X

=
∂c

∂t

∣∣∣∣
fixed x

+
∂Fi

∂t

∂c

∂xi

∣∣∣∣
fixed t

=
∂c

∂t

∣∣∣∣
fixed x

+ ui
∂c

∂xi

∣∣∣∣
fixed t

. . . using
∂Fi

∂t
= ui from (2.1)

=
∂c

∂t

∣∣∣∣
fixed x

+ u ·∇c . . . in vector notation. (2.2)

Definition: The Material Derivative a.k.a. The Lagrangian Derivative a.k.a. The Total Derivative a.k.a. The
Substantial Derivative

The material derivative is the rate of change of an intrinsic property of a Lagrangian fluid particle expressed in

terms of Eulerian quantities. It is symbolically denoted as
D

Dt
and is given by the expression

D

Dt
=

∂

∂t
+ (u ·∇). (2.3)

Interpretation of the terms in the Material derivative:

1. The first term is the local rate of change at a fixed Eulerian position x due to temporal changes.

2. The second is the ‘convective rate of change’ caused by the velocity u driving fluid elements through
spatial gradients in the quantity of interest. The next example illustrates how a steady (i.e. time inde-
pendent) Eulerian field could imply a non-zero time-rate-of-change for Lagrangian properties because of
the convective rate-of-change term.

Example: If there is a concentration of pollutant c = c(x) in a river that flows steadily with constant speed
u = (u0, 0, 0) (see Figure 2.4), how does the concentration change in a fluid element that ‘follows the fluid’?

Note that (a) the concentration at a fixed point does not change with time ∂tc = 0 but (b) the concentration
inside a fluid element that ‘follows the fluid’ will change in time, at a rate given by the material derivative

Dc

Dt
=
∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
= u0

∂c

∂x
, (2.4)

www.youtube.com/watch?v=mdN8OOkx2ko
www.youtube.com/watch?v=mdN8OOkx2ko


20 CHAPTER 2. MATHEMATICAL MODELLING OF FLUID FLOW

which is non-zero if and only if there is flow u0 ̸= 0 and spatial gradients in ∂xc ̸= 0.

It is the material derivative which gives us the rate of change of velocity, i.e. the acceleration a or ai, of the
fluid element

ai =
Dui
Dt

=
∂ui
∂t

+ uj
∂ui
∂xj

or a =
Du

Dt
=
∂u

∂t
+ (u ·∇)u. (2.5)

Notably, even when the flow is steady in the Eulerian frame, so that ∂tu = 0, the acceleration still has a
component (u ·∇)u due to the spatial variation of the velocity field—this is the convective acceleration.

Example: If we take a one-dimensional steady flow u = (u(x), 0, 0) (see Figure 2.5), then what is the acceler-
ation of fluid particles?

a1 =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= u

∂u

∂x
, a2 = a3 = 0, (2.6)

so that where there is a spatial gradient in u there is an acceleration.

2.4.5 Reynolds transport theorem

To describe laws of physics in terms of continuum quantities, we also need the time-rate-of-change of a total
quantity enclosed within a finite Lagrangian volume Ω. If the volumetric density of a property B is b, i.e., if
the total amount of B in any volume Ω may written as

B =

∫

Ω

b dΩ, (2.7)

then

D

Dt

(∫

Ω(t)

b dΩ

)
=

∫

Ω

∂b

∂t
dΩ+

∫

∂Ω

b(u · n̂) dA, (2.8)

where ∂Ω is the bounding surface of Ω and u is the Eulerian velocity. The first term on the right hand side is
simply the contribution that arises from the rate of change of b within the volume, even when the Lagrangian
volume stays fixed. The second term arises from the motion of the Lagrangian volume under the Eulerian
velocity u. Here (u · n̂) dA is the rate at which volume of fluid enters the surface ∂Ω through an infinitesimal
area dA (as shown in Figure 2.6), and its product with b gives the amount of B entering the volume per unit
time.

2.5 Flow Visualisation

Watch the video on ‘Flow Visualisation’ narrated by Prof. Stephen J. Kline from Stanford University. YouTube
link: www.youtube.com/watch?v=nuQyKGuXJOs, duration: 31 mins.

2Here we mix index notation for F with vector notation for X.

Figure 2.4: Evolution of a fluid element through a spatial gradient in concentration c = c(x) showing that the
concentration inside the fluid element will change from t = 0 to t = t1 even though the flow is steady ∂tu = 0.

www.youtube.com/watch?v=nuQyKGuXJOs
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Figure 2.5: The acceleration of a fluid element M as it travels from an area of low speed (left) at time t0 to a
region of high speed (right) at t = t1. Therefore, despite the flow being steady, so that at a fixed point ∂tu = 0,
the fluid inside M feels an acceleration due to its motion.

The most common way to visualise a flow, theoretically (once we have u) or experimentally, is by drawing a
set of curves. Four types of curves are commonly used in fluid dynamics. Some are purely theoretical concepts,
while others are used for experimental convenience.

To visualise a flow field experimentally, one usually places illuminated passive tracers (e.g. dye, bubbles or
beads that don’t alter the flow) into the flow (e.g. Figure 2.7). The various curves are then realized by the
choice of the initial release of the tracer particles and the visualization technique.

1. Particle paths or pathlines: The paths of fluid elements (‘particle paths’) Fi(t), which are simply
the locus of points traced by a Lagrangian fluid element. Equation (2.1) may be used to theoretically
determine these from an Eulerian description of the velocity field. Typically a small amount of illuminated
passive tracers are introduced in the flow, and the resulting images superimposed in post-processing to
reveal the pathlines for a flow. Long exposures, if possible, also yield pathlines.

2. Streaklines: The instantaneous locus of all the Lagrangian fluid elements that have passed through or
will pass through a fixed point in space is a ‘streakline’. It is easier to visualize streaklines experimentally,
which can be done by introducing a steady streak of a passive tracer in the fluid (hence the name).
Theoretically, streakline at time t passing through a point X0 may be obtained by solving the equation

F (X, s) = X0, ti ≤ s ≤ tf , (2.9)

for X(s), where ti and tf are the initial and final times of interest, and then plotting F (X(s), t) for fixed
t while varying s as a parameter.

3. Timelines: A ‘time line’ is the subsequent shape of a curve made of Lagrangian fluid elements. It is
more convenient to visualize a timeline experimentally than it is to calculate it theoretically. For the
experimental visualization, a passive tracer is released at a time instance in the shape of a curve. The
subsequent evolution of the curve naturally visualizes the timeline. To construct the timeline from an
Eulerian velocity field, we start with a curve parameterized as X0(s) by parameter s. The subsequent
shape of the curve at time t is F (X0(s), t), which is the timeline at time t.

Figure 2.6: Schematic showing a motion of a small area element dA of ∂Ω of the surface bounding the volume
Ω. Here u is the Eulerian velocity field on the surface and n̂ is the unit normal. The quantity (u · n̂) dA is the
rate at which volume of fluid is entrained into Ω through dA.
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Figure 2.7: Steady laminar flow (from left to right) around a solid cylinder with streamlines/particle paths
showing the trajectories of fluid elements

4. Streamlines: A ‘streamline’ is a curve which is everywhere tangent to the velocity vector of an Eulerian
flow field. Streamlines are mathematical constructions, and, therefore, are easier to construct theoretically.
Parameterized by an independent parameter s, the streamlines (x, y, z) = (x(s), y(s), z(s)) at time t are
obtained by solving

∂xi(s)

∂s

∣∣∣∣
fixed t

= ui. (2.10)

To visualize streamlines in an experiment, it is necessary to measure the Eulerian velocity field. This
measurement can be accomplished using techniques such as particle image velocimetry (PIV).

Streamlines, although theoretical, have deep physical significance, especially for incompressible flows.
Because the volume of a Lagrangian fluid element is conserved for an incompressible fluid, the only way a
fluid element can move is by displacing the one ahead of it. At the same instance, the one ahead in turn
displaces the one ahead of it, and so on. An incompressible fluid can flow only by forming such chains of
instantaneous displacement of fluid elements. A streamline is nothing but one such chain.

Because of the aforementioned interpretation, streamlines cannot terminate in an incompressible fluid.
They must extend all the way to infinity or form closed curves.

In general, the particle paths differ from the streamlines, which differ from streaklines. The following example
illustrates that.

Example (from Acheson Ex 1.8): Consider the two-dimensional flow given by

u = (u0, kt, 0), with u0, k > 0.

What are the pathlines, streamlines and streaklines?

The pathlines are obtained from solving

∂F1

∂t
= u0,

∂F2

∂t
= kt

∂F3

∂t
= 0

for fixed initial position (F1, F2, F3) = (X,Y, Z) at t = 0. Therefore,

(F1, F2, F3) =

(
u0t+X,

1

2
kt2 + Y, Z

)

which, notably, could be used to transform from Eulerian to Lagrangian coordinates (by expressing (x, y, z) in
terms of (X,Y, Z)). We can eliminate t to find the particle paths

y =
k

2

(
x−X

u0

)2

+ Y

which are parabolas with their minimum at (X,Y ) and k/2u20 as the coefficient of the quadratic term (see
figure 2.8 for the pathline through the origin).
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Figure 2.8: Sketch showing how streamlines change in time, differing at t = 0 and t = t1, the particle path
y = k

2 (x/u0)
2 of a fluid element starting from X = Y = 0 at t = 0, and streaklines for three different times

passing through X = Y = 0.

The streamlines come from
∂x

∂s
= u0,

∂y

∂s
= kt,

∂z

∂s
= 0

for a fixed t. Therefore
(x, y, z) = (u0s+ a, kts+ b, c)

for a, b, c constant. Eliminating s we find that

y =
kt

u0
x+ (b− kta/u0)

showing that the streamlines are straight lines whose slope will increase in time. The result is figure 2.8.

The streaklines are also easy to calculate. Upon solving equation (2.9), we get for X(s)

X(s) = X0 − us, Y (s) = Y0 −
1

2
ks2, Z(s) = Z0.

The equation for the curve for the streakline is F (X(s), t), which is

x = X0 − us+ ut, y = Y0 −
1

2
ks2 +

1

2
kt2, z = Z0.

These are to be plotted for fixed t while varying s as a parameter, which means that they are inverted parabolas
through (X0 + ut, Y0 + kt2/2, Z0). The one through the origin is plotted in figure 2.8.

2.6 Deformation of infinitesimal fluid elements

The study of the deformation of continuous media (including solid and fluid dynamics) is a course in its own
right, so we will only consider the concepts we will require to formulate the equations of fluid mechanics. In
particular, we will attempt to understand how flow deforms fluid elements; as it is this (rate of) deformation
that is related to the internal stress (and hence forces) required for formulating Newtons second law for the
fluid.

The velocity can be decomposed into fundamental components which specify the kinematics of the flow (the
geometry of the motion), i.e. how small fluid elements are deformed by the flow. To do so, consider the flow at
an infinitesimal distance δxj from a reference point xj , see figure 2.9.

The Taylor expansion of ui(xj + δxj), keeping only the terms up to the first power in δxj inclusive, gives

ui(xj + δxj , t) = ui(xj , t) +
∂ui
∂xj

δxj = ui(xj)︸ ︷︷ ︸
Translation

+ rij δxj︸ ︷︷ ︸
Rotation︸ ︷︷ ︸

Rigid Body Motions

+ eij δxj︸ ︷︷ ︸
Shearing and Extension

(2.11)



24 CHAPTER 2. MATHEMATICAL MODELLING OF FLUID FLOW

Figure 2.9: Flow kinematics - how the flow velocity varies in the vicinity of (a distance δx from) a point x.

where we have decomposed ∂xj
ui into an anti-symmetric (rij = −rji) rate of rotation tensor

rij =
1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
or in vector notation r =

1

2

(
∇u−∇uT

)
,

and the symmetric (eij = eji) rate of strain tensor

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
or in vector notation e =

1

2

(
∇u+∇uT

)
.

Note that ∇u = e+ r.

Figure 2.10: Different modes of deformation to a fluid element (in 2D).

Each of the terms contributing to the velocity

ui(xj + δxj , t) = uTi + uRi + uSi , where uTi = ui(xj), uRi = rij δxj , uSi = eij δxj (2.12)

can now be analysed. The first term in (2.11) is due to rigid body translation uTi = ui(xj , t). If rij = eij = 0,
then all fluid elements have the same velocity.

Rate of rotation OR Vorticity

Due to the antisymmetry of rij , there are only 3 independent components (all diagonal elements zero) and
we can rewrite the term uRi = rij δxj as a cross product uRi = ϵijkΩjδxk or uR = Ω×δx (see figure 2.11), where
Ω = (r32, r13, r21) is the rate of rotation vector (you can check this). Thus we see that this term is associated
with rigid body rotation about the reference point with rotational rate Ω.

Notably, the rate of rotation vector Ω is equal to half the vorticity vector

ω = ∇× u = 2Ω, so that uR =
1

2
ω × δx (2.13)

which is an important fluid mechanical quantity we will repeatedly encounter - now we can recognise it as a
measure of the local rate of rotation in the fluid. In Cartesian coordinates it is given by

ω =

∣∣∣∣∣∣

ex ey ez
∂
∂x

∂
∂y

∂
∂z

u v w

∣∣∣∣∣∣
=

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
.
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Figure 2.11: Sketch illustrating the rigid body rotation uR = Ω× δx induced a distance δx away from a point
x by the rotation rate Ω. Here, Ω points out of the paper.

Example: How many components of vorticity does a 2D flow have?

For a two-dimensional flow u = (u(x, y, t), v(x, y, t), 0), the vorticity has only one component (0, 0, ω) where
ω = ∂v

∂x − ∂u
∂y , with a rotation axis in the z-direction.

Strain rate:

As the first two terms in (2.11) are associated with rigid body motion, it is the third term uSi = eijδxj
which represents the straining motions which distinguish the flow through the relative motion of adjacent fluid
elements. The rate of strain tensor eij can be further decomposed into (a) diagonal elements which are associated
with extensional motion and (b) off-diagonal elements give the shear rate of strain.

Consider how the components of eij deform an infinitesimal rectangular fluid element of size δx × δy (fig-
ure 2.12) in a two-dimensional flow u = (u(x, y, t), v(x, y, t), 0). For simplicity, we will remove translation of the
fluid element by considering flow relative to the point A, so that a Taylor expansion gives the flow components
at adjacent points to A shown in figure 2.12.

Figure 2.12: The velocity components relative to a point A in a material element M at time t.

From figure (2.13) we can see that extensional rate of strain acts to increase the lengths of the sides. For
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example, taking the line AB, in a time δt the point B moves so that the new length of AB at time t+ δt is

δx(t+ δt) = δx(t) +
∂u

∂x
δx

︸ ︷︷ ︸
speed

δt︸︷︷︸
time

. (2.14)

Therefore, the (infinitesimal) strain (extension/original length)

δSx = (δx(t+ δt)− δx(t))/δx(t)
(2.14)
=

∂u

∂x
δt so the rate of strain is

∂Sx

∂t
=
∂u

∂x
= e11

as expected.

Figure 2.13: Left: deformation due to extensional strain on the material element at a time t + δt. Right:
influence of shear strain on the material element at a time t+ δt.

It can be shown that the extensional components change the volume V of the fluid element as

1

V

DV

Dt
= ekk symbolically

1

V

DV

Dt
= ∇ · u (2.15)

so that for an incompressible fluid, where the volume of the fluid element does not change in time (DtV = 0),
we have ekk = e11 + e22 + e33 = 0. In other words, extension of a fluid element in one direction must lead to
contraction in one of the other directions.

The shear rate of strain acts to drive the element from its rectangular shape. This can be quantified by
measuring the angle between the sides. It can be shown that (see Examples Sheet 2) the angle θ at CAB in
figure 2.12 evolves according to

−∂θ
∂t

= 2e12.

So we have seen that it is the vorticity and rate of strain that give us all of the information we require to
understand how fluid elements are locally deformed, with the former telling us about the rotation of the flow
and the latter about the relative motion of fluid elements (which is related to viscous stress).
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Figure 2.14: The deformation of two initially perpendicular fluid line element (i.e. they ‘follow the fluid’) in a
shear flow showing how AC rotates - hence the flow contains vorticity.

Example (Adapted from Acheson §1.4): Consider the ‘shear flow’ u = (βy, 0, 0). How does this simple flow
deform fluid elements? E.g., what is the contribution from deformation to (2.12)?

Let’s consider all the different contributions to (2.12).

• The translational term is just uTi = (βy, 0, 0).

• The vorticity will only have a component in the z-direction ω = (0, 0, ω) which is

ω =
∂v

∂x
− ∂u

∂y
= −β.

So there is rotation in the flow, despite the streamlines and particle paths being straight. This is because
the velocity at the point C is greater than that at A so the line CA rotates clockwise (figure 2.14). The
rate of rotation will be ω/2 = −β/2.
Therefore, the contribution to (2.12) is

uRi =
1

2
ϵijkωjδxk =

1

2
(βdy,−βdx, 0)

• The only non-zero entries in the rate of strain tensor will be due to ∂yu = β. Therefore, extensional strains
are all zero (ensuring incompressibility) and the only non-zero entries are e12 = e21 = β/2. Consequently,
the contribution to (2.12) is

uSi =
1

2
(βdy, βdx, 0).

• Therefore, even in this simple flow there are rigid body motions of translation and rotation as well as
deformation.

2.7 Conservation Laws in Continuum Mechanics

In continuum mechanics, it is customary to refer to laws of nature as conservation laws. An obvious example is
the law of conservation of mass. As the fluid flows, mass can neither be created nor could it disappear. A less
obvious one is Newton’s second law of motion. While momentum is not “conserved”, the law constrains the rate
of change of momentum to be equal to force. Thus, by considering forces to be “sources” of momentum, one
may still use the language of “conservation laws” to describe Newton’s second law. Examples of quantities to
develop conservation laws for include mass, (linear) momentum, angular momentum (or moment of momentum),
internal energy, total energy, and entropy. We will limit ourselves to mass, momentum and angular momentum.

Three main concepts need to be introduced to develop the conservation law for an abstract quantity, which
we will call B. These are the volumetric density of B, the volumetric rate of generation (also known as the
source) of B, and the rate of exchange of B between neighbouring fluid volumes.
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1. Volumetric density of B is the quantity b such that the total amount of B in any volume Ω could be
written as ∫

Ω

b dΩ.

Examples are presented in Table 2.1. The tensorial rank of b and B are identical. Furthermore, b is an Eulerian
field, i.e., b(x, t).

B b Notes

Mass ρ ρ is the mass density

Momentum ρu u is the Eulerian fluid velocity

Angular momentum x× ρu

Internal energy ρe e is the specific internal energy

Entropy ρs s is the specific entropy

Table 2.1: Examples of physical quantities B and their volumetric density.

2. Volumetric source term also known as body source term, qB , is the volumetric density of the rate of
generation of B. The rate of increase of B in any volume Ω due to the volumetric source is

∫

Ω

qB dΩ.

Examples include gravitational force as a source for momentum and ohmic generation of heat as an example
for energy. The source qB(x, t) is a field with its tensorial rank being equal to that of b.

3. Surface source term, hB , originates from the fact that the volume Ω may gain the quantity B from the
neighbouring fluid. For example, the force exerted on Ω by the neighbouring fluid contributes to the rate of
change of momentum in Ω. By Newton’s third law, the volume Ω exerts an equal and opposite force on the
surrounding fluid. In this sense, the surface source may be interpreted as an exchange of B between neighbouring
fluid volumes.

A concrete example of such a term is the action of fluid pressure to generate force, or rate of change of
momentum, on a volume Ω. Due to the pressure, hB = −pn̂ because the net force due to pressure is

∫

∂Ω

−pn̂ dA.

Generally, the strength of such a surface source term is proportional to area of the bounding surface, rather
than volume as for the volumetric source term. In general, the contribution to the rate of change of B due to
the surface source is written as ∫

∂Ω

hB dA.

The tensorial rank of hB and of b are equal. Clearly, hB must also be a field, i.e. hB(x, t). One important way
hB differs from both b and qB is that in addition to being a field, hB also has dependency on the orientation
of the surface ∂Ω. In other words, if a point X is on the boundary of two different volumes, hB can have
different values depending on the unit outward normal to their bounding surfaces. This is represented through
an explicit dependence on the unit normal as hB(x, t; n̂).

The conservation law for B may now be written as

D

Dt

∫

Ω

b dΩ =

∫

Ω

qB dΩ+

∫

∂Ω

hB dA. (2.16)

2.7.1 The dimensional inconsistency of the surface source term

Let us consider an arbitrary shape for Ω. Now consider the limit of (2.16) as Ω shrinks in size indefinitely,
whilst retaining its shape. Let L be a length characterizing Ω. The volume of Ω scales a L3 and the area as L2.
Thus, the first two terms of (2.16) scale as proportional to L3, while the surface source term scales proportional
to L2, i.e.,

D

Dt

∫

Ω

b dΩ

︸ ︷︷ ︸
∝L3

=

∫

Ω

qB dΩ

︸ ︷︷ ︸
∝L3

+

∫

∂Ω

hB dA

︸ ︷︷ ︸
∝L2

. (2.17)
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Figure 2.15: Cauchy’s tetrahedron.

As the volume shrinks, L becomes successively smaller, and relative to the surface source term, the first two
terms become smaller. In the limit L→ 0, the conservation law for B (2.16) reduces to

∫

∂Ω

hB(x, t; n̂) dA = 0. (2.18)

In other words, for any infinitesimal volume, the contribution of the surface source term that is proportional to
the area of the bounding surface must vanish. The consequence of this condition is the basis for all continuum
mechanics.

2.7.2 Cauchy’s tetrahedron argument

Augustine-Louis Cauchy, a french mathematician, engineer and physicist, reasoned the compelling consequence
of (2.18) by taking the shape of the volume Ω to be a tetrahedron, as shown in Figure 2.15. The tetrahedron
has four faces; the area of the inclined face is given by the (vector3) An̂, while the remaining three faces are
−A1ê1, −A2ê2 and −A3ê3, respectively, so that An̂ = Aiêi. We will now evaluate the terms of the integral in
(2.18), but note because of the infinitesimal size of the tetrahedron, we will not need the distribution of hB over
the areas. The value of hB may be considered a constant with x, and we will drop the dependence on x in the
notation here. But because we could choose a tetrahedron of any proportions, the dependence on n̂ remains,
which we will explicitly write.

The contribution to the integral in (2.18) from the four face may now be written as

hB(n̂)A+ hB(−ê1)A1 + hB(−ê2)A2 + hB(−ê3)A3 = 0. (2.19)

By the principle of exchange of B, hB(−ê1) = −hB(ê1), which arises from the fact that the amount of B gained
by the tetrahedron is lost by the neighbouring fluid. Let’s further define (in index notation) TB

...j = hB(êj),

where the . . . on the indices of TB accounts for the free indices of hB , which may have a nonzero tensorial
rank. In this way, TB has a tensorial rank one higher than hB . Furthermore, it follows from the geometry for
tetrahedrons, Ai = Ani. With this notation, (2.19) becomes

hB(n̂) = TB
...jnj . (2.20)

This dependence of the surface source term on the surface normal helps satisfies the condition (2.18) not
only for a tetrahedron but also for any Ω. This is so because

∫

∂Ω

hB(x, t; n̂) dA =

∫

∂Ω

TB
...jnj dA =

∫

Ω

∂TB
...j

∂xj
dΩ, (2.21)

3Reminder: the direction of a planar area is normal to its face.
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where the last step follows from the tensorial form of the divergence theorem. This step converts the surface
integral to a volume integral, and in the limit of vanishing volume Ω, this term scales as L3 and not as L2.

The conservation law for B now reads

D

Dt

∫

Ω

b dΩ =

∫

Ω

qB dΩ+

∫

∂Ω

TB
...jnj dA =

∫

Ω

qB dΩ+

∫

Ω

∂TB
...j

∂xj
dΩ. (2.22)

Applying the Reynolds transport theorem and the divergence to the left hand side yields two additional forms
of this equation.

∫

Ω

∂b

∂t
dΩ+

∫

∂Ω

bujnj dA =

∫

Ω

qB dΩ+

∫

∂Ω

TB
...jnj dA =

∫

Ω

qB dΩ+

∫

Ω

∂TB
...j

∂xj
dΩ, (2.23)

∫

Ω

(
∂b

∂t
+
∂(buj)

∂xj

)
dΩ =

∫

Ω

qB dΩ+

∫

∂Ω

TB
...jnj dA =

∫

Ω

qB dΩ+

∫

Ω

∂TB
...j

∂xj
dΩ, (2.24)

Equation (2.22-2.24) are integral representations of the law of conservation of B. The term buj −T...j is the
total flux of b and buj is the convective flux. (In general, the flux of b is the rate at which b crosses a surface
per unit area.) Conservation laws also have a differential form. To derive it, note that (2.24) holds irrespective
of the volume Ω. This is only possible if the integrand itself vanishes everywhere, i.e.,

∂b

∂t
+
∂(buj)

∂xj
= qB +

∂TB
...j

∂xj
. (2.25)

We will see that in the differential representation of general conservation laws, the rate of change of the density
b is balanced by the divergence of the flux of b and the volumetric generation of b.

We now apply the result of this general analysis to specific quantities.

2.8 Conservation of Mass a.k.a. Mass Balance

Now we use the (classical) physical law that mass can neither be created or destroyed. This implies, when b = ρ,
then qB = TB

j = 0, and (2.22-2.24) becomes

D

Dt

∫

Ω

ρ dΩ = 0, (2.26)

∫

Ω

∂ρ

∂t
dΩ+

∫

∂Ω

ρujnj dA = 0, (2.27)

∫

Ω

(
∂ρ

∂t
+
∂(ρuj)

∂xj

)
dΩ = 0. (2.28)

Equations (2.26-2.28) are integral representations of the law of conservation of mass. The differential represen-
tation corresponding to (2.25)

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 or in vector notation

∂ρ

∂t
+∇ · (ρu) = 0. (2.29)

We will now interpret the terms in some of representations of the law of conservation of mass, starting with
(2.27). The first term in this equation is the rate of change of mass in a fixed (i.e. Eulerian) volume Ω. The
second term is the rate at which mass exits the volume due to the Eulerian velocity u. Conservation of mass
imples that the two rates must balance, which is the statement of (2.27).

Next we will discuss the terms in (2.29). The first term is the Eulerian rate-of-change of density the second
is the divergence of the convective mass flux ρu. Another form of (2.29), written using the expression

∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u = 0 (2.30)

as

1

ρ

Dρ

Dt
= −∇ · u = − 1

V

DV

Dt
, (2.31)
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can be interpreted as the relative Lagrangian rate of change of density is balanced by the negative of the relative
Lagrangian rate of change of volume. In other words, if volume of an infinitesimal Lagrangian element increases,
its density must decrease.

If either the fluid or the flow is “incompressible”, that means that the density of infinitesimal Lagrangian
fluid particles does not change with time, i.e., Dρ/Dt = 0. This implies

∇ · u ≡ 0 everywhere. (2.32)

2.9 Conservation of Momentum a.k.a. Momentum Balance

The density of momentum is ρu, and its rate of change is a force as per Newton’s second law of motion. The
volumetric source term is a force per unit volume that acts on the fluid and is termed a “body force”, e.g.
the force of gravity. We will denote it by qB = ρg, where g is acceleration due to the body force. Here the
density and the volumetric source of momentum are vectors. The second rank tensor resulting from the surface
force TB = T is the stress tensor, which when acting on an area element dA with normal nj exerts the force
dFi = Tijnj dA.

The three different integral forms representing conservation of momentum are

D

Dt

∫

Ω

ρui dΩ =

∫

Ω

ρgi dΩ+

∫

∂Ω

Tijnj dA =

∫

Ω

ρgi dΩ+

∫

Ω

∂Tij
∂xj

dΩ. (2.33)

∫

Ω

∂(ρui)

∂t
dΩ+

∫

∂Ω

ρuiujnj dA =

∫

Ω

ρgi dΩ+

∫

∂Ω

Tijnj dA =

∫

Ω

ρgi dΩ+

∫

Ω

∂Tij
∂xj

dΩ, (2.34)

∫

Ω

(
∂(ρui)

∂t
+
∂(ρuiuj)

∂xj

)
dΩ =

∫

Ω

ρgi dΩ+

∫

∂Ω

Tijnj dA =

∫

Ω

ρgi dΩ+

∫

Ω

∂Tij
∂xj

dΩ. (2.35)

The differential form of momentum balance is

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= ρgi +

∂Tij
∂xj

. (2.36)

The left-hand side of (2.36) is D(ρu)/Dt can be simplified further by using the product rule and mass balance
(2.29) as

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= ui

��������:0,mass balance(
∂ρ

∂t
+
∂(ρuj)

∂xj

)
+ ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
. (2.37)

This simplifies the differential form of momentum balance (2.36) to the Cauchy momentum balance equation as

ρ
Dui
Dt

≡ ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= ρgi +

∂Tij
∂xj

, or ρ
Du

Dt
= ρg +∇ · T . (2.38)

The left-hand side of this equation is mass times acceleration per unit volume of an infinitesimal Lagrangian
element. The right-hand side contains the net forces on this volume per unit volume. It is obvious that ρg is
the body force per unit volume. To see that ∇ · T is the unbalanced surface force per unit volume, consider
forces acting on a infinitesimal cubic fluid element with side d and bottom corner at x = (x0, y0, z0); see figure
2.16. We will start with the x-component of this force which will involve us calculating T1jnjδA (with δA = d2)
over all six sides of the cube.

δF1 = d2 (T11(x0 + d, y, z)− T11(x0, y, z)) (2.39)

+d2 (T12(x, y0 + d, z)− T12(x, y0, z)) (2.40)

+d2 (T13(x, y, z0 + d)− T13(x, y, z0)) . (2.41)

Taylor expanding this expression in small d and keeping the leading order only, we have:

δF1 = d3
[
∂T11(x, y, z)

∂x
+
∂T12(x, y, z)

∂y
+
∂T13(x, y, z)

∂z

]
= d3

∂T1j(x, y, z)

∂xj

where we have used the summation convention (with j the repeated index).
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Figure 2.16: An infinitesimal cubic fluid element. Shown are the components of the stress tensor acting on one
face whose normal aligns with the x-axis.

Generalising to the other force components, we have:

δFi = d3
∂Tij(x, y, z)

∂xj
.

symbolically this is the divergence of the stress tensor δF = d3 ∇ ·T.

2.10 Conservation of Angular Momentum a.k.a. Torque Balance

The angular momentum changes at a rate equal to the net external torque applied on a body. For angular
momentum, b = x× ρu, qB = x× ρg, and hB = x× (T · n̂). Note that the sources of angular momentum are
related to the sources of linear momentum. We will go straight to the differential form of the angular momentum
balance, which reads

∂(ϵijkxjρuk)

∂t
+
∂(ϵijkxjρukum)

∂xm
= ϵijkxjρgk +

∂(ϵijkxjTkm)

∂xm
. (2.42)

Differentiating each term using the product rule yields

ϵijkxj

(
∂(ρuk)

∂t
+
∂(ρukum)

∂xm
− ρgk − ∂(Tkm)

∂xm

)
+ ϵijkρujuk = ϵijkTjk. (2.43)

The first term is the cross product of x with the linear momentum equation (2.36), and the second term is zero
due to the anti-symmetry of ϵijk in the indices j, k and the symmetry of ujuk. Thus the only remaining term
is ϵijkTjk = 0. A direct consequence of this is that Tjk = Tkj , or, in other words, T is a symmetric second-rank
tensor.

2.11 Constitutive laws

The differential equations governing a continuum material in an Eulerian description that we have derived so
far are mass balance (2.29) and momentum balance (2.38). These equations are partial differential equations
for determining the density and velocity by integrating in time, i.e., if suitable initial conditions are available
for ρ and u, and the volumetric forces g and stress T were known, then one may use these equations to find the
rate of change of ρ and u, which one then uses to determine the subsequent evolution of ρ and u. The situation
is similar to the use of Newton’s second law of motion for describing the motion of rigid bodies; knowing the
external forces one uses it to integrate for velocity and position. Here we think about integrating for ρ and u.
Let’s examine quantities we do not know yet; viz. g and T .

The simplest one is g: it must be prescribed as part of the problem.

The stress T needs to determined based on the fluid and the flow, so that the system of equations (2.29)
and (2.38) is closed. The closure of this system is made by the constitutive law for the continuum material.
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This constitutive law is what distinguishes between a solid and a fluid, and for that matter, between different
kinds of “complex” fluids. Next we present some considerations for a constitutive law.

2.11.1 General considerations

An infinitesimal fluid element must continue to deform when a shear stress acts on it – this is the definition of
a fluid. Therefore, we expect the components of the stress to be related to the components of the rate of shear
tensor, i.e.,

Tij = fij [emn; ρ]. (2.44)

We will start with some simple models.

2.11.2 An Ideal or Inviscid fluid

In an ideal or inviscid fluid there is no friction between fluid elements, so that the stress is given by an isotropic
pressure that acts normal to the surface and inward. Therefore, our particular form of the stress tensor (known
as a constitutive relation) is

Tij = −pδij . (2.45)

Figure 2.17: In an inviscid fluid the stress is generated entirely by the pressure, which acts with equal magnitude
on all faces of our infinitesimal cubic fluid element. Clearly then, flow must be driven by this pressure changing
from point to point, i.e. by spatial gradients in pressure.

Substituting into Cauchy’s equation (2.38), we arrive at the so-called Euler equation which describes inviscid
fluid flow

ρ
Dui
Dt

= − ∂p

∂xi
+ ρgi or in vector notation ρ

Du

Dt
= −∇p+ ρg. (2.46)

This equation is named after Leonhard Euler, the celebrated Swiss mathematician.

Here the pressure p is a thermodynamic quantity, so an equation of state that relates p to other thermo-
dynamic quantities would serve this purpose. The problem is that thermodynamic relations also introduce
some other thermodynamic variable independent of density (say temperature) into consideration, which in itself
could be non-uniformly distributed throughout the fluid. So an equation incorporating the law of conservation
of thermal energy must be derived and treated for this new variable with mass and momentum balance. In
some limited but practically useful circumstances, it is possible to eliminate the temperature and simply write
p(ρ). Examples include the propagation of sound waves. Under those circumstances, p is well-defined. A very
singular special case of this scenario is for an incompressible flow, for which ρ is a constant, and, therefore, there
is no explicit form for p(ρ) but p must be deduced such that no changes in ρ occur.
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We will see later that an ideal fluid has a zero Newtonian viscosity.

In the absence of fluid motion Dtu = 0 we recover a hydrostatic balance p = p0 − ρgz.

2.11.3 A Newtonian Fluid

To describe a viscous fluid, we separate the pressure contribution to the stress tensor from the remaining terms
— the latter will be associated with an internal friction or viscosity as

Tij = −pδij + σij , (2.47)

where σij is called the deviatoric stress tensor. For a Newtonian fluid, the deviatoric stress arises from viscosity,
and therefore, σij is also called the viscous stress tensor. An ideal fluid is characterized by σij ≡ 0. For a
general fluid the dependence on the rate-of-strain tensor in (2.44) is passed on to σij as σij = sij [emn; ρ] for
some tensorial function sij .

The Newtonian constitutive law corresponds to the relation where the relation between σij and emn is linear
and isotropic. Linearity means that

σij = Aijmnemn, (2.48)

where Aijmn is a constant fourth rank tensor. For the relation to be isotropic, Aijmn must be isotropic, i.e., it’s
components may not depend of the coordinate system used to represent the tensor. We saw in (1.12c) that the
most general fourth rank isotropic tensor has the form λδijδkl + αδikδjl + βδilδjk, where λ, α and β are scalar
constants. Substituting in (2.48) yields σij = (α+β)eij+λδijemm. Here we learn that, in general, two constants
are needed to specify the Newtonian constitutive law. However, for incompressible fluids (which Newton tacitly
assumed), the term emm = ∇ · u is identically zero, and setting (α + β) to 2µ, where µ is the coefficient of
Newtonian viscosity, yields the tensorial form of the Newtonian constitutive law for an incompressible fluid4

σij = 2 µ eij so that Tij = −p δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.50)

Under a uniform shear flow, such as in Figure 2.1, the relation (2.50) reduces to the one-dimensional relation
σ = µγ̇.

Substituting (2.50) into Cauchy’s equation (2.38), we have the incompressible Navier-Stokes equations:

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂2ui
∂x2j

+ ρgi or symbolically ρ
Du

Dt
= −∇p+ µ∇2u+ ρg. (2.51)

For zero viscosity, (2.51) reduces to the Euler equation (2.46) for ideal fluid.

2.11.4 Navier-Stokes in cylindrical coordinates

The incompressible form of momentum conservation for the radial, azimuthal and axial components of velocity
(u, v, w) in a cylindrical polar coordinate system (r, θ, z) in differential form are:

ρ

(
∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z
− v2

r

)
= −∂p

∂r
+ ρgr + µ

{
∂

∂r

(
1

r

∂(ur)

∂r

)
+

1

r2
∂2u

∂θ2
− 2

r2
∂v

∂θ
+
∂2u

∂z2

}
(2.52a)

ρ

(
∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+ w

∂v

∂z
+
uv

r

)
= −1

r

∂p

∂θ
+ ρgθ + µ

{
∂

∂r

(
1

r

∂(vr)

∂r

)
+

1

r2
∂2v

∂θ2
+

2

r2
∂u

∂θ
+
∂2v

∂z2

}
(2.52b)

ρ

(
∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂z

)
= −∂p

∂z
+ ρgz + µ

{
1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2
∂2w

∂θ2
+
∂2w

∂z2

}
, (2.52c)

and the mass conservation equations is

∇ · u =
1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0. (2.53)

Here gr, gθ and gz are the r, θ and z components of gravitational acceleration.

4For a compressible flow, where σij can depend both on eij and the identity tensor, the most general form of such a tensor is

σij = 2 µ

(
eij −

1

3
δij ekk

)
︸ ︷︷ ︸

Strain without volume change

+ ξ ekkδij︸ ︷︷ ︸
Strain due to volume change

, (2.49)

where µ is the viscosity (‘shear viscosity’ or ‘first viscosity coefficient’), ξ is the “bulk viscosity” or the “second viscosity coefficient”.
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2.12 Boundary and initial conditions

As usual for PDEs, in order to find a unique solution one has to specify appropriate boundary conditions and
initial conditions.

2.12.1 Initial conditions

The set of relevant fields must be specified at t = 0 at each point x in the domain occupied by the fluid. For
incompressible fluids, one only has to specify the initial velocity field u0

u(x, t = 0) = u0. (2.54)

2.12.2 Boundary conditions

The number of boundary conditions required depends on the bulk equations (Euler or Navier Stokes in our
case) and their form is determined by the properties of the boundaries (i.e. the physics at the boundary).

Viscous Fluids

At solid impenetrable boundaries, it has been found empirically that the fluid velocity at the boundary ∂Ω
of the retaining volume Ω adjusts itself to the boundary’s velocity Ub: this is the famous no-slip boundary
condition:

u(x, t) = Ub(x, t), x ∈ ∂Ω. (2.55)

Inviscid Fluids

For inviscid fluids, where one only has first derivatives of fluid velocity (no ∇2u term), one can only enforce
inpenetrability of the boundary, i.e. that the normal to the boundary velocity component has to match to the
one of the boundary, whereas the parallel velocity component remains arbitrary, since the fluid can slip freely
along the boundary in the absence of internal friction. This is the so-called free-slip boundary conditions written
as

u⊥(x, t) = Ub⊥(x, t), x ∈ ∂Ω. (2.56)

In addition, at every point on the fluid where the fluid flows inward, the vorticity needs to be specified. This is
an advanced condition, which we will not pursue in this course.

Kinematic boundary condition for moving material boundaries

For cases like the free surface, the motion of the boundary itself occurs under the influence of the fluid flow.
In other words, the reason the free surface changes shape is because the fluid particles at the free surface flow.
Mathematically, the free surface is a material boundary, i.e.,

DX

Dt
= u(X, t), for the Lagrangian label X ∈ ∂Ω. (2.57)

Traction condition or the dynamic boundary condition

In lieu of specifying velocity, one may also specify the traction ti, i.e. the force per unit area on the boundary.
In general, the traction condition is written as

Tijnj = ti, x ∈ ∂Ω, where ni is the unit normal. (2.58)

This condition is especially useful for moving free surfaces, where two conditions are needed, viz., one for
specifying the rate of motion of the interface and another as a boundary condition for the fluid partial differential
equations. In that case, along with the kinematic boundary condition, the traction information furnishes the
second condition.
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Chapter 3

One-dimensional flows

In this chapter, we will treat exact solutions of Navier-Stokes equations that result from the assumption of
“one-dimensionality”. Such flows do occur in nature and are highly relevant for many common applications.

3.1 Steady flows

Several key features are common amongst the one-dimenional solutions of Navier-Stokes equations, which are
summarized here.

3.1.1 One-dimensionality

The assumption of one-dimensionality underlies all the flows presented in this chapter. One-dimensionality
means that in either Cartesian or cylindrical-polar coordinates, the velocity has only one non-zero component
of velocity, which varies in a direction perpendicular to the flow. Here are examples, which are illistrated in
Figure 3.1:

(a) Plane Couette-Poiseuille flow

inner cylinder

outer cylinder

(b) Cylindrical Couette-Poiseuille (c) Circular Couette flow

Figure 3.1: Schematic of three cases of one-dimensional flows.

1. Plane Couette-Poiseuille flow: This is a flow of a fluid sandwiched between two infinite planar walls,
shown in Figure 3.1(a). In this case the flow is along a single direction x parallel to the wall and the flow
velocity varies in the direction y perpendicular to the walls.

2. Cylindrical Couette-Poiseuille flow, some cases of which are also known as Hagen-Poiseuille flow:
This is the flow in the axial (i.e., z) direction through the gap between two infinitely-long coaxial cylinders.
The flow varies only with r, the radial distance from the axis.

3. Circular Couette flow: This is the flow of a fluid in the azimuthal (i.e., êθ) direction between two
coaxial cylinders. The flow velocity varies only with the radial distance from the axis, i.e. r.

In practice, the walls on plane Couette-Poiseuille flow and the cylinders in the cylindrical Couette Poiseuille
flow are not infinitely long. This is only meant as an approximation for the case where they are much longer
than the width of the gap through which the flow occurs.

37
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In all these cases, the component of the acceleration of the fluid in the direction of the flow is zero. In
fact, the acceleration is zero for the case of plane and cylindrical Couette-Poiseuille flow. For circular Couette
flow the acceleration is centripetal. Therefore, when solving for the flow using the Navier-Stokes equations, the
inertial term drops out of the momentum balance in the direction of the flow.

3.1.2 The driving force

The flow could be drive by one of the following three agencies:

1. Pressure gradient: A gradient of pressure is said to have been set and driving the flow when an
external agency, e.g., a pump, increases the pressure at the inlet of the pipe or channel, or decreases it far
downstream. In this case, the flow is driven by the pressure decreasing along the length of the channel
in the direction of the flow. The resulting flow is called a Poiseuille flow, after the French physicist and
physiologist Jean Léonard Marie Poiseuille, who used this type of analysis to study blood flow through
capillaries. The general type of question that arises for these types of flow are about the pressure gradient
needed to drive a certain volumetric flow rate through the domain.

2. Gravity: Similar to pressure gradient, the flow could be driven by an external volumetric force, such as
gravity.

3. Motion of the walls: An external agency could push on the walls to move along the direction of the
flow, thereby dragging the fluid next to them. The general question that comes up in such cases is the
shear stress needed to move the walls at prescribed speeds. This type of flow is called Couette flow, after
the French physicist Maurice Marie Alfred Couette.

Note that in circular Couette flow either a pressure gradient or a constant force of gravity cannot drive the
flow. This is so because of periodicity in the direction of the flow. Pressure cannot continually decrease along
the flow because after an angle of 2π we return back to the original point, where we expect to find the same
pressure as we started. Therefore, circular Couette flow may only be driven by motion of the walls.

All three methods of driving the flow can be used in instruments that measure the dynamic viscosity of the
fluid.

3.2 Select solutions of Navier-Stokes

Here we present some examples of solutions of Navier-Stokes equations for steady one-dimensional flows.

3.2.1 Plane Poiseuille flow

This case corresponds to the pressure-driven flow in a channel. The walls of the channel are stationary in the
lab frame in this case.

Given the flow profile u = u(y)êx, the equation of continuity is trivially satisfied and the two-dimensional
Navier-Stokes equations in Cartesian coordinates simplify to

∂p

∂x
= µ

∂2u

∂y2
, (3.1a)

∂p

∂y
= 0. (3.1b)

According to (3.1b), the pressure does not vary with y, and hence we can assert that p(x) alone. Then in (3.1a),
the left-hand side depends on x alone, whereas the right-hand side on y alone, implying that both sides must
be a constant. Physically, because the flow does not change with x, we do not expect the pressure gradient to
vary with x either. Using the constancy of ∂p/∂x, (3.1b) may be readily integrated to yield

u(y) =
1

2µ

∂p

∂x
y2 +Ay +B, (3.2)
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where A and B are constants of integration. They are determined by the no-slip boundary conditions on the
two walls

u

(
y = ±H

2

)
= 0, (3.3)

which yields

u(y) = − 1

2µ

∂p

∂x

(
H2

4
− y2

)
. (3.4)

The flow rate per unit width Q/w is

Q

w
= −

∫ H/2

−H/2

u(y) dy = − 1

2µ

∂p

∂x

(
H2y

4
− y3

3

)H/2

−H/2

= −H3

12µ

∂p

∂x
. (3.5)

This is the relation between the pressure-gradient and the flow rate that is practically sought. Experimental
measurements of H, ∂p/∂x and Q/w may be used to determine the dynamic viscosity µ.

Also worth noting is the result that the average fluid speed Q/(wH) is 2/3 of the maximum fluid speed
u(y = 0).

3.2.2 Hagen-Poiseuille

This is the flow driven by a pressure gradient inside a pipe. In this case, the inside cylinder shown in Figure 3.1(b)
is absent the fluid fills all the space inside the outer cylinder. Also, the outer cylinder is stationary.

Continuity is trivially satisfied by the velocity profile given by u = w(r)êz. The radial and axial components
of the Navier-Stokes equations, (2.52a) and (2.52c), respectively, simplify to

∂p

∂r
= 0, (3.6)

∂p

∂z
=
µ

r

∂

∂r

(
r
∂w

∂r

)
. (3.7)

Similar to the case of plane Poiseuille flow, here the pressure depends on z alone and must decrease at a rate
independent of z, i.e. ∂p/∂z is a constant. The z-momentum equation may then be integrated ot yield

r
∂w

∂r
=
r2

2µ

∂p

∂z
+A, w(r) =

r2

4µ

∂p

∂z
+A ln r +B, (3.8)

where A and B are constants of integration.

At this stage, it appears that we only have one boundary condition w(r = R) = 0 corresponding to no-slip
on the outer wall at r = R. It is commonly (and in my opinion incorrectly) stated that a second condition is
that the velocity cannot blow up on the axis r = 0 and hence A = 0. Then, one uses no-slip on r = R to obtain

w(r) = − 1

4µ

∂p

∂z
(R2 − r2). (3.9)

A much more convincing argument for setting A = 0 is as follows. Consider the surface of an imaginary cylinder
at radius r. The axial force exerted by the fluid inside of the cylinder on the fluid outside is

F̃z = 2πrσrz = 2πrµ
∂w

∂r
= 2π

(
r2

2µ

∂p

∂z
+A

)
, (3.10)

where we have used (3.8) in the final step. Now consider the limit of r approaching zero, i.e. the imaginary
cylinder shrinking towards the axis. In the limit F̃z approaches 2πA. Based on this, it seems that A is related
to the influence of an imaginary agency on the axis of the cylinder to exert a shear force on the fluid. Since we
do not have any such agency present in the problem under consideration, F̃z must vanish, and so must A.

The relation between pressure gradient and the volumetric flow rate through the pipe Q may also be found
easily as

Q =

∫ R

0

2πrw(r) dr = −2π

4µ

∂p

∂z

∫ R

0

r(R2 − r2) dr = −2π

4µ

∂p

∂z

(
R2r2

2
− r4

4

)R

0

= −πR
4

8µ

∂p

∂z
. (3.11)

Also worth noting is the result that the average fluid speed Q/(πR2) is 1/2 of the maximum fluid speed
w(r = 0).
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Flat plate

Fluid

Figure 3.2: Schematic setup of the Stokes first problem.

3.3 Unsteady flows

If condition of steadiness is relaxed, then the governing equations simplify to a partial differential equation for
the flow profile that depends only on one spatial coordinate and time. Here we present one such example. The
same three geometrical categories and the three kinds of driving forces can be used to classify this type of flow.
We will not repeat them here.

Because of the partial nature of the differential equation, the solution procedure depends on the particular
problem and can be a little involved. It is illustrated for the case of Stokes first problem below.

3.3.1 Stokes first problem

An infinite flat plate borders a semi-infinite layer of fluid of density ρ and viscosity µ, see Figure 3.2. The fluid
and the plate are initially stationary. At t = 0, the plate impulsively starts to translate parallel to itself with
speed U . This drags the fluid adjacent to the plate.

In this case, the fluid velocity may be assumed to be one-dimensional as u = u(y, t)êx. With this assumption,
the velocity profile satisfies continuity exactly. The governing Navier-Stokes equations simplify to

ρ
∂u

∂t
= −∂p

∂x
+ µ

∂2u

∂y2
, (3.12)

0 = −∂p
∂y
. (3.13)

The y-momentum balance (3.13) implies p does not vary with y. Combining this with the condition far away
from the plate, where the fluid is stationary and therefore the pressure is a constant, implies that the pressure
is constant everywhere. This implies that the pressure gradient in (3.12) vanishes.

The governing equations and the boundary conditions now become

∂u

∂t
= ν

∂2u

∂y2
, (3.14a)

u(y = 0, t) = U, (3.14b)

u(y → ∞, t) = 0, (3.14c)

u(y, t = 0) = 0. (3.14d)

This equation possesses a scaling symmetry. To see this transform

t = αt̃, y = βỹ, u = γũ. (3.15)

The transformed equations are

∂ũ

∂t̃
= ν

α

β2

∂2ũ

∂ỹ2
, (3.16a)

ũ(ỹ = 0, t̃) =
U

γ
, (3.16b)

ũ(ỹ → ∞, t̃) = 0, (3.16c)

ũ(ỹ, t̃ = 0) = 0. (3.16d)
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Equations (3.16) reduce to (3.14) if γ = 1 and α = β2, which implies that the solution must satisfy the
transformation rule

u(y, t) = ũ(ỹ, t̃) = u

(
y

β
,
t

β2

)
, (3.17)

where β remains a free parameter. Since we are free to choose any value for β, let us choose β2 = t, so that

the profile u(y, t) at any time t is related to the profile u

(
y√
t
, 1

)
. Loosely speaking, the scale for y increases

as
√
t with time.

An apparently casual, but in fact equally rigorous, way of arriving at the same result is to perform a rough
scaling balance, where, as a matter of notation, we replace partial derivatives with ratios

∂u

∂t
∼ u

t
,

∂u

∂y
∼ u

y
,

∂2u

∂y2
∼ u

y2
, (3.18)

where the ‘∼’ symbols stands for ‘scales as’. Equation (3.14) then becomes

u

t
∼ ν

u

y2
or y ∼

√
νt, (3.19)

which gives us the dependence of the scale of y with t. Using (3.14b), the scale for u is U .

This sugests the functional form for the similarity variable

ξ =
y

δ(t)
where δ(t) = 2

√
νt, (3.20)

and the factor of 2 in δ is for future algebraic convenience. Here δ represents the scale for y. The following
expressions are useful

dδ

dt
=

1

2

δ

t
,

∂ξ

∂t
= −1

2

ξ

t
,

∂ξ

∂y
=

1

δ
. (3.21)

Using these scales, we present an ansatz for the form of the velocity profile u(y, t) = Uf(ξ), where U imparts
the dimensions to u and the function f(ξ) is dimensionless. This implies

∂u

∂t
= Uf ′(ξ)

∂ξ

∂t
= −Uξ

2t
f ′(ξ), (3.22)

∂2u

∂y2
=
U

δ2
f ′′(ξ). (3.23)

The partial differential equation (3.14) becomes

−Uξ
2t
f ′(ξ) = ν

U

δ2
f ′′(ξ) =⇒ f ′′(ξ) + 2ξf ′(ξ) = 0. (3.24)

In the first part of this equation, notice how the dimensional parts (U/t and νU/δ2) of the terms are closely
related to the terms (u/t and νu/y2) in the (3.19), and they cancel each other because of our choice of δ
determined by the scaling balance. Solving the ordinary differential equation in (3.24) yields the general solution

f(ξ) = A+Berf(ξ), (3.25)

where erf stands for the error function, and A and B are constants of integration. The constants are determined
by the boundary conditions (3.14b-3.14d), which on f become f(0) = 1 and f(∞) = 0. The particular solution
is then

f(ξ) = 1− erf(ξ) = erfc(ξ), (3.26)

erfc stands for the complimentary error function.

Interested students can try out the following problems of this kind:

1. the flow in the annular gap between two co-axial cylinders (see Figure 3.1c) driven by the rotation of the
outer or the inner cylinder,

2. the flow driven simultaneously by pressure gradient, gravity and the motion of walls in the planar or
cylindrical geometry (see Figure 3.1ab),

3. the analogue of Stokes first problem, but where the wall velocity U = αt, i.e. the wall accelerates with a
constant acceleration α,

4. Stokes second problem, where the wall velocity oscillates sinusoidally for perpetuity.
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Chapter 4

Dimensional Analysis

Dimensional analysis applies the principles of manipulating dimensions of physical quantities for reducing the
complexity of a problem. It is best illustrated through examples.

Figure 4.1: Schematic of a two-dimensional flow past a cylinder.

4.1 Reducing parameters in a set of equations

A process called “non-dimensionalization” is used to reduce the number of parameters the solution of a set of
equations depend on. Here, we non-dimensionalize the Navier-Stokes equations for flow past an infinitely-long
cylinder.

Consider a fluid of density ρ and viscosity µ flowing with speed U along the x-axis past an infinitely long
cylinder of radius R, as shown in Figure 4.1. Let us write the Navier-Stokes equations and the boundary
conditions.

∂u

∂x
+
∂v

∂y
= 0, (4.1a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (4.1b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
, (4.1c)

u(x → ∞, t) = U êx, (4.1d)

u(|x| = R, t) = 0. (4.1e)

We would like to determine the drag, D, per unit length on the cylinder

D =

∫

∂Ω

êx · T · n̂ dA, where Tij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.2)

First notice the parameters of this problem: ρ, µ, U and R. We use three of these parameters (R, U and ρ)
to “non-dimensionalize” all the quantities in the problem, i.e., we rescale

t =
R

U
t̃, x = Rx̃, u = U ũ, p = ρU2p̃, and T = ρU2T̃ . (4.3)
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Note that x̃, ũ, p̃ and T̃ are all dimensionless.

This transformation converts (4.1) to

∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0, (4.4a)

(
∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ

)
= −∂p̃

∂x̃
+

1

Re

(
∂2ũ

∂x̃2
+
∂2ũ

∂ỹ2

)
, (4.4b)

(
∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ

)
= −∂p̃

∂ỹ
+

1

Re

(
∂2ṽ

∂x̃2
+
∂2ṽ

∂ỹ2

)
, (4.4c)

ũ(x̃ → ∞, t̃) = êx, (4.4d)

ũ(|x̃| = 1, t) = 0, (4.4e)

where Re =
ρUR

µ
is called the Reynolds number after Osborne Reynolds. The Reynolds number is the ratio

of the strengths of inertial effects to viscous effects in the fluid.

The rescaled version of drag from (4.2) is

D = ρU2R

∫

∂Ω

êx · T · n̂ dA, where T̃ij = −p̃δij +
1

Re

(
∂ũi
∂x̃j

+
∂ũj
∂x̃i

)
. (4.5)

Note that the dimensionless equations (4.4) are equivalent to the dimensional one (4.1) with ρ = 1, U = 1,
R = 1 and µ = Re−1. This means the flows for different sets of parameters are simply rescaled versions of each
other if the Re for them is identical. Using this, the drag on these cylinders will also be related. Or, rewriting
(4.5) as

CD =
D

1
2ρU

2R
= 2

∫

∂Ω

êx · T · n̂ dA, (4.6)

implies that

CD = F (Re) alone. (4.7)

Here CD is called the drag coefficient, and the factor of 1/2 in the denominator is for historical reasons.

4.2 Deducing dependence on parameters

Equation 4.7 may be derived without reference to partial differential equations, simply by using the arbitrariness
of the system of units. Clearly, the drag on the cylinder depends on R, U , µ and ρ, i.e.,

D =
1

2
f(ρ, µ,R, U), (4.8)

where the factor of 1/2 is included to conform to convention that will be introduced later. In a different set of
units, where length l, time t and mass m transforms as

l̃ = αl, t̃ = βt, m̃ = γm, (4.9)

where the symbols with the tilde refer to transformed units. Under this transformation, the parameters trans-
form as

ρ̃ =
m̃

l̃3
=

γ

α3

m

l3
=

γ

α3
ρ, (4.10)

µ̃ =
m̃

l̃t̃
=

γ

αβ

m

lt
=

γ

αβ
µ, (4.11)

R̃ = αR, (4.12)

Ũ =
α

β
U, and (4.13)

D̃ =
γ

β2
D. (4.14)
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By the arbitrariness of system of units, (4.8) also holds in the transformed system, i.e.,

D̃ =
1

2
f(ρ̃, µ̃, R̃, Ũ). (4.15)

Transforming it back implies

γ

β2
D =

1

2
f

(
γ

α3
ρ,

γ

αβ
µ, αR,

α

β
U

)
. (4.16)

Because the scaling factors α, β and γ could be chosen at will, we choose

α = 1/R, β =
U

R
, γ =

1

ρR3
. (4.17)

Substituting in (4.15) gives

D
1
2ρU

2R
= f

(
1,

µ

ρUR
, 1, 1

)
= F (Re), (4.18)

where the inserted factor of 1/2 turns the left hand side to the drag coefficient as in (4.7).

First, let us derive (4.7) using a short-cut. Notice that there are two ways to construct the dimensions of D
from those of ρ, µ, R and U : (i) ρU2R, and (ii) µU . The former neglects viscosity and the latter inertia. Since
both have dimensions of D, their ratio is dimensionless; in fact

ρU2R

µU
= Re. (4.19)

Because there are 3 basic dimensions of mass, length and time that make up the dimensions of 4 parameters,
there is only 4-3=1 dimensionless parameter that could be constructed from the 4 parameters.

We can go a little further and derive more insight into the functional form of F (Re). Suppose that Re is
large, so inertia dominates and viscous effects are negligible. Under these circumstances, µ is eliminated as a
parameter, so

D = fI(ρ, U,R) =
1

2
CDρU

2R. (4.20)

In the opposite extreme, if the fluid is extremely viscous, Re is small, the density of the fluid (which quantifies
inertia) could be neglected and

D = fV (µ,R,R) = CV µU, (4.21)

where CV is a dimensionless constant. The relation could be rearranged to determine the functional form of
F (Re) in the limit of small or large Re.

F (Re) = CD = constant . . . Re large, (4.22)

=
CV µU
1
2ρU

2R
=

2CV

Re
. . . Re small. (4.23)

In this way, dimensional analysis can assist in reducing the number of parameters in the physical relation
between variables describing a phenomenon.
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Chapter 5

Hydrostatics and Bernoulli equation

In this chapter, we will treat two closely related topics in fluid mechanics – hydrostatics and the Bernoulli
equation. The reader is presumably acquainted with the concepts in hydrostatics; here we include it for com-
pleteness and to illustrate the proofs underlying some celebrated principles. The Bernoulli equation is one of
the most important results in fluid dynamics because, unlike the Navier-Stokes equations, it yields answers to
questions inspired by applications.

5.1 Hydrostatics

Hydrostatics is the study of the mechanics of static fluids. In this case u = 0 and the Navier-Stokes equations
reduce to

∇p = ρg, (5.1)

which may be readily integrated to yield

p = p0 + ρg · (x− x0), (5.2)

where p0 is the pressure at a reference point x0. The general result is that pressure increases with depth at a
rate that balances the increase of weight of the fluid per unit area.

5.1.1 Archimedes principle

A cornerstone of hydrostatics is force exerted by a static fluid on immersed (or floating) bodies given by the
Archimedes principle. We can now derive this principle for a body occupying a volume Ω as follows. The net
hydrostatic force on the body, Fh, is due to hydrostatic pressure

Fh =

∫

∂Ω

−pn̂ dA =

∫

∂Ω

(p0 + ρg · (x− x0)) n̂ dA, (5.3)

where n̂ is the unit normal pointing out of the body. This expression can be simplified using the divergence
theorem as

Fh =

∫

Ω

ρg dΩ. (5.4)

In other words, the net force on the immersed body is equal to the net volumetric force acting on the fluid
displaced by the body. This is the statement of Archimedes principle.

5.2 Bernoulli equation

The Bernoulli equation is a celebrated result in fluid dynamics, which could be considered as a generalization
of hydrostatics. There are two different conditions for incompressible flow under which two different versions
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of Bernoulli equation apply. Here we present those two. Analogues of these equations for compressible flow are
also possible, which we do not treat.

Underlying both of these versions is an expression of incompressible momentum balance in differential form
that uses the identity

u× ω = u× (∇× u) = ∇
(
1

2
|u|2

)
− u ·∇u. (5.5)

Using (5.5) to re-write the u ·∇u term in the momentum balance yields

(
ρ
∂u

∂t
+∇

(
1

2
ρ|u|2 + p− ρg · x

))
= µ∇2u+ ρu× ω. (5.6)

5.2.1 Steady incompressible inviscid flow

For a steady inviscid flow, (5.6) simplifies to

∇B̃ = ρu× ω, where B̃ =
1

2
ρ|u|2 + p− ρg · x (5.7)

The derivative of B̃ in the direction of either u or ω is zero, i.e.,

u ·∇B̃ = ρu · (u× ω) = 0 and ω ·∇B̃ = ρω · (u× ω) = 0. (5.8)

Therefore, B̃ is constant along a curve that is everywhere tangent to the velocity (i.e. along a streamline) or to
the vorticity (i.e. along a curve known as the vortex line).

5.2.2 Unsteady incompressible potential flow

Potential flow implies that the velocity is the gradient of a scalar function, ϕ(x, t), called the vector potential,
i.e., u = ∇ϕ, everywhere in the domain of interest. Due to incompressibility, the velocity potential satisfies the
Laplace equation

∇ · u = 0 =⇒ ∇ · (∇ϕ) = ∇2ϕ = 0. (5.9)

Furthermore, owing to the identity that the curl of a gradient vanishes,

ω = ∇× u = ∇×∇ϕ = 0. (5.10)

The two terms on the right-hand side of (5.6) vanish because ∇2u = ∇2(∇ϕ) = ∇(∇2ϕ) = 0, and ω = 0. The
unsteady term on the left hand side can also be included inside the gradient to yield

∇B̂ = 0, where B̂ = ρ
∂ϕ

∂t
+

1

2
ρ|u|2 + p− ρg · x. (5.11)

Because the gradient of B̂ vanishes everywhere, B̂ does not vary with the spatial coordinates, but may depend
on time Note that there is no condition on the viscosity of the fluid in this case.

5.3 Applications and examples

The main use of Bernoulli equation is the determine pressure once the form of velocity is known. In the
discussion surrounding the Navier-Stokes equations (see §2.11.2), the difficulty of determining pressure for an
incompressible flow was identified. In general, for incompressible fluids, pressure is a variable that is determined
implicitly through the condition that the fluid density is not altered by the flow. This difficulty is overcome
by the Bernoulli equation when one of the conditions for its validity applies. Also note that the two forms of
Bernoulli equation reduce to hydrostatics for the case u ≡ 0. Here we will present examples of the application
of Bernoulli equation.

In many cases, the application of Bernoulli in the steady inviscid case does not require an explicit specification
of the complete velocity profile. Instead, the velocity is known at some specific location, and use is made of it
to derive relations of practical use.
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Water

stream
line

Figure 5.1: Schematic setup for flow out of an opening in a tank.

5.3.1 Flow through an opening in a tank

Consider water flowing out of a tank through a opening of aera A, which is small relative to the area of the
tank viewed from above, as shown in Figure 5.1, thereby draining the tank. The question is to determine the
rate at which the tank empties. We will see that the rate of emptying will depend on the level of water, H,
above the level of the opening.

Here note that the flow is not steady. This is because as the water-level falls, the driving force H decreases,
thereby reducing the flow with time. But if the water-level doesn’t fall too fast, for example, the opening
being too small to drain the water, then a steady approximation might be worthwhile to make. Nor is water
inviscid, but we imagine considering the limit of the fluid being inviscid to examine what the consequence of
that assumption would be. If the consequence of these approximations agrees with observations, then we will
deduce that the assumptions are useful. So let’s get on with it.

We are not given any details of the velocity field. So we will assume the velocity to be uniform, with a
value U , across the area of the opening. Now let’s trace back a streamline from some point near the opening to
another point where we might be able to approximate the velocity and pressure. Note that, by the definition
of a streamline, it depicts the instantaneous chain of displacement of fluid particles. Since the fluid exiting the
opening is ultimately being displaced by the falling water-level, every streamline that starts in the opening must
terminate at the free surface. Thus we consider a streamline BB′ or CC ′ for our consideration.

On such a streamline, Bernoulli equation for steady inviscid flow states

B̃ =
1

2
ρ|u|2 + p− ρg · x = constant, (5.12)

and, therefore,

pB +
1

2
ρU2 − ρg · xB = pB′ +

1

2
ρU2

B′ − ρg · xB′ . (5.13)

Here we use our approximation UB′ ≪ U , so the term ρU2
B′/2 on the right-hand side is negligible. We also use

that both pB and pB′ are close to atmospheric values (because both the free surface and the opening are exposed
to open air), so they cancel each other from the two sides of this equation. Then using g · (xB − xB′) = gH
and solving for U yields

U =
√
2gH. (5.14)

Water exits the opening at the same speed as an object freely falling under gravitational acceleration g from a
height H!

5.3.2 A wind turbine

A wind turbine is a device that extracts the kinetic energy from an otherwise uniform flow of a fluid, in this case
air. Due to the law of conservation of energy, the fluid in the wake of the turbine must lack in kinetic energy
flux. The turbine must necessarily exert a drag on the flow to slow it down. Without this drag, the flow in the
wake of the turbine could not be retarded to generate a deficit in the kinetic energy flux. A simple calculation
reveals that there exists an optimum amount of drag for a turbine to extract the most power from the flow.
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Turbine

Station 1 Station 2 Station 3

streamline

Figure 5.2: Depiction of the actuator disc idealization of a wind turbine. The blue shaded region at “Station
2” swept by the blades of the model turbine is the actuator disc. The stream tube flowing through the actuator
disc is also shown bounded by the black curves. The brown shaded region shows the stream tube at “Station
1”, which is far upstream on the turbine, and the green shaded region at “Station 3” far downstream. The fluid
speed at “Station i” is Ui.

This calculation is based on the abstraction of the wind turbine as the so-called “linear momentum actuator
disc”, or simply an “actuator disc”. An actuator disc is a thin disc-shaped region of space where a concentrated
force acts. An example of an actuator disc, in the context of analyzing the response of a wind turbine, is shown
in Figure 5.2. The region swept by the blades of the turbine is the actuator disc; the region is called a disc
because it is thin along the streamwise direction. As an idealization, the influence of the turbine on the flow
is replaced by a concentrated body force opposing the flow exerted on the fluid occupying this disc. While the
force exerted by the blades of a real turbine on the fluid is unsteady (because of the rotation of the blades),
the unsteadiness is ignored in the idealization and replaced by a steady force uniformly distributed throughout
the disc. In practice, as the turbine spins faster, the greater the average force it exerts on the fluid. (This is
similar to the operation of a fan – the faster the blades of the fan spin the greater the force it exerts on the
surrounding fluid and faster the resulting flow.)

Now we ask, how much force should the turbine exert on the flow. If the exerted force is too weak then
the kinetic energy deficit in the wake, and thereby the power extracted, is also small. But if the exerted force
is too strong then the turbine acts as a fan and blows the fluid backwards thus pumping power back into the
flow, instead of extracting it from the flow. Hence, there must be an optimal amount of force to exert on the
fluid to maximize power extraction. This principle can be understood quantitatively using the actuator disc
idealization for the turbine which exerts a steady force on the fluid.

The problem is stated as follows. A turbine of radius R operates in an incompressible fluid of density ρ
flowing uniformly at speed U . What is the maximum power, P , it can extract from the flow? We do not
anticipate the fluid viscosity to be a dominant effect. It then follows from dimensional analysis that

P = η × 1

2
ρU3πR2, (5.15)

where η is a dimensionless number called the efficiency of the turbine. The efficiency is interpreted to be the

fraction of the kinetic energy flux
1

2
ρU3πR2 incident on the swept area of the turbine blades that the turbine

can convert to power. Similarly, the drag is

D = CD × 1

2
ρU2πR2, (5.16)

where CD is the coefficient of drag. According to the argument in the previous paragraph, the efficiency is
expected to be maximum for a particular drag coefficient.

Let us now construct estimates of the efficiency and the drag coefficient, which happens to be convenient
to do in terms of the wake deficit. Consider three stations on the stream tube incident on the turbine, shown
in Figure 5.2 – Station 1 far upstream of the turbine, Station 2 at the turbine, and Station 3 far downstream.
The fluid velocity at Station 1 is expected to be uniform, with a magnitude equal to the given freestream U ,
so U1 = U . Similarly, the fluid velocity at Station 3 is also expected to be uniform in the stream tube – we
will take the speed to be U3. (Outside the streamtube, far downstream, the fluid speed is U .) If the turbine
extracts power from the flow, we expect U3 < U . The cross-section area of the stream tube at Stations 1, 2 and
3, is taken to be A1, A2 and A3, respectively, with A2 = πR2 given. The fluid pressure at Stations 1 and 3 are
equal to the atmospheric value p∞.
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Figure 5.3: Schematic of profiles of speed and pressure along the streamline shown in Figure 5.2.

Now we apply laws of conservation of mass and momentum in integral form to the volume Ω occupied by
the stream tube. According to the law of conservation of mass

U1A1 = U2A2 = U3A3. (5.17)

Momentum conservation between Stations 1 and 3 implies

ρU2
1A1 − ρU2

3A3 +

∫

∂Ω

(p− p∞)n̂ dA−D = 0. (5.18)

It is left as an exercise for the reader by considering mass and momentum balance on the fluid outside Ω to
show that the pressure integral

∫
∂Ω

(p− p∞)n̂ dA = 0, thereby

D = ρU2
1A1 − ρU2

3A3 = ρU2A2(U1 − U3). (5.19)

Similarly, mechanical energy conservation implies

P =
1

2
ρU3

1A1 −
1

2
ρU3

3A3 =
1

2
ρU2A2

(
U2
1 − U2

3

)
. (5.20)

Note that no characteristics of the turbine are used to derive these relations.

It is now time to relate these results from the integral form of the conservation laws to the size of the
turbine itself. To facilitate the subsequent analysis, consider the profiles of velocity and pressure along the
centerline of the stream tube, which also happens to be a streamline due to axisymmetry. These profiles are
shown schematically in Figure 5.3. The fluid speed far upstream of the turbine is U1 = U , but under the
influence of the drag exerted by the actuator disc, it decreases monotonically along the streamline to U2 at the
turbine and to U3 far downstream. On the streamlines upstream of the turbine and downstream of the turbine,
the fluid pressure profile obeys the Bernoulli equation. Therefore, upstream of the turbine, the pressure grows
monotonically, starting with p1 = p∞ far upstream. At the turbine itself, because of the drag on the actuator
disc, the pressure profile suffers a jump. Downstream of the turbine, the pressure again grows monotonically to
p3 = p∞ far downstream.

The jump in the pressure across the actuator disc may be determined by applying the Bernoulli equation
along the streamline between Stations 1 and 2, and 2 and 3, respectively, which reads

p1 +
1

2
ρU2

1 = p−2 +
1

2
ρ|U2|2, (5.21)

p3 +
1

2
ρU2

3 = p+2 +
1

2
ρ|U2|2. (5.22)

Here we have tacitly assumed that the component of fluid velocity tangential to the actuator disc does not suffer
a jump at Station 2. (Note that the normal component must be continuous owing to mass conservation.) The
difference between the two yields

p−2 − p+2 =
1

2
ρ
(
U2
1 − U2

3

)
. (5.23)

Note that the magnitude of the pressure jump across the actuator disc depends only on the far upstream
and far downstream speed on the streamline passing through any point on the actuator disc, and is therefore
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Figure 5.4: Efficiency η and drag coefficient CD as a function of the turbine induction factor a.

independent of the location on the actuator disc. Applying conservation of momentum across the actuator disc
then yields the drag on it to be

D = (p−2 − p+2 )A2 =
1

2
ρA2

(
U2
1 − U2

3

)
. (5.24)

Equating the expressions for drag from (5.19) and (5.24) yields a celebrated equation on this topic

U2 =
U1 + U3

2
. (5.25)

This equation states that at the actuator disc, the fluid speed is equal to the average of the far upstream and
downstream values.

Now we are prepared to write the power extracted and the drag exerted by the actuator disc in terms of the
wake deficit, which we parametrize by U2. For convenience, we non-dimensionalize U2 = aU and U3 = bU so
that (5.25) becomes

a =
1 + b

2
or b = 2a− 1. (5.26)

The parameters a and b are called the turbine induction factor and the wake induction factor, respectively.
Based on this result, and that the minimum value of b is zero, the minimum value of a is 1/2. In other words,
the greatest deficit in the wake we consider is when the fluid in the wake comes to a complete stop, in which
case the fluid speed at the turbine is half that of the freestream.

Substituting (5.26) in (5.19) and (5.20) yields

D = ρU2πR2a(1− b) =
1

2
ρU2πR2 × 4a(1− a), (5.27)

P =
1

2
ρU3πR2a(1− b2) =

1

2
ρU3πR2 × 4a2(1− a), (5.28)

where by comparison with (5.16) and (5.15), the drag coefficient and efficiency are

CD = 4a(1− a), and η = 4a2(1− a). (5.29)

The dependence of η and CD on a is shown in Figure 5.4. Both these variables are zero when a = 1,
because there is no wake-deficit in this case. As a decreases below unity, the wake deficit builds up, the turbine
experiences drag and can extract some power. The extracted power reaches a maximum at a = amax, which
may be found by setting

dη

da
= 4(2a− 3a2) = 0 =⇒ amax =

2

3
and ηmax =

16

27
≈ 0.59. (5.30)

Decreasing a below amax reduces the extracted power more. The drag coefficient that leads to maximum power
extraction is CD,max = 8/9.
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This calculation introduces one of the most basic concepts to evaluate the performance of a wind turbine
– its efficiency. Furthermore, no turbines have been invented with efficiency greater than 16/27. This limit on
the maximum efficiency of a linear momentum actuator disc is known as the ’Betz limit’ or the ’Betz-Joukowski
limit’ commemorating the contributions of the German physicist Albert Betz and the Russian scientist and
mathematician Nikolay Joukowski, for providing a detailed rationale behind its validity.

5.3.3 A water wave

The Cartesian components of velocity (u, v, w) in a semi-infinite layer of fluid (y ≤ 0) of density ρ are given by

u = k sin(ωt) cos(kx)e−|k|y, v = −|k| sin(ωt) sin(kx)e−|k|y, w = 0,

where ω and k are constants and t is time. Gravity or any other volumetric force is absent. This velocity field
closely approximates the flow under a sinusoidal train of water waves. The question is to deduce the pressure
on the surface y = 0.

This is unsteady flow. It will be extremely useful if we could apply the unsteady version of Bernoulli equation
here. Let us first examine if the conditions for it are satisfied.

1. Is the flow incompressible?

∇ · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= sin(ωt)e−|k|y (−k2 sin(kx) + |k|2 sin(kx) + 0

)
= 0. (5.31)

Yes!

2. Is the flow irrotational? The velocity is two-dimensional, so we only need to verify the z-component
of vorticity

ωz =
∂v

∂x
− ∂u

∂y
= sin(ωt)e−|k|y (−k|k| cos(kx)− (−k|k|) cos(kx)) . (5.32)

Yes! So the velocity may be written as the gradient of a potential ϕ.

∂ϕ

∂x
= u = k sin(ωt) cos(kx)e−|k|y,

∂ϕ

∂y
= v = −|k| sin(ωt) sin(kx)e−|k|y, (5.33)

which yields

ϕ = sin(ωt) sin(kx)e−|k|y. (5.34)

According to Be rnoulli (in the absence of gravity),

p = −ρ∂ϕ
∂t

− 1

2
ρ|u|2 = −ρω cos(ωt) sin(kx)e−|k|y − 1

2
ρk2 sin2(ωt)e−2|k|y. (5.35)

On y = 0, the pressure is

p|y=0 = −ρω cos(ωt) sin(kx)− 1

2
ρk2 sin2(ωt). (5.36)

A useful homework is to deduce the pressure using the Navier-Stokes equations and verify that it agrees
with the one obtained using Bernoulli.
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Chapter 6

Potential flow

The case where the fluid velocity in given by

u = ∇ϕ, ∇2ϕ = 0, (6.1)

is called potential flow. Velocity profiles of this type arise in a number of situations in practice, but most
importantly this theory allows fluid dynamicists to construct flow profiles that automatically satisfy conservation
of mass and momentum. Here we treat this subject.

6.1 Conditions for and implications of potential flow

The conditions under which potential flow is realized are those of incompressibility and irrotationality, i.e.,

∇ · u = 0 and ∇× u = 0, respectively. (6.2)

A necessary and sufficient condition for irrotationality is

∇× u = 0 ⇐⇒ u = ∇ϕ, (6.3)

where ϕ is a scalar field known as the velocity potential. Substituting this form of u into the incompressibility
conditions yields Laplace equation ∇2ϕ = 0 for ϕ. In this way, mass is conserved.

We have seen in (5.11), that momentum is conserved if the pressure satisfies the Bernoulli equation, i.e.,

ρ
∂ϕ

∂t
+

1

2
ρ|u|2 + p− ρg · x = constant in x. (6.4)

In this manner, potential flow satisfies mass and momentum conservation for a viscous fluid.

To construct a potential flow, one solves the Laplace equation (6.1) for ϕ subject to appropriate boundary
conditions. Given the nature of Laplace equation, on the boundaries only one of the two components of velocity
may be imposed, but not both. On the boundary between the fluid and a solid object, a condition of no-normal
flow is imposed, i.e.,

∇ϕ · n̂ = 0, on solid walls. (6.5)

Therefore, in general, the no-slip condition cannot be satisfied by potential flow past solid objects and potential
flow generally slips past the walls. Regardless, potential flow is incredibly succcessful in providing insight into
situations where solid bodies are either not present or could be abstracted away.

6.2 Incompressible and irrotational flow in two-dimensions

While the general concept of potential flow applies in three dimensions, the application of complex variables
makes potential flow much more powerful in two dimensions. Essentially, the use of complex variables trivializes

55
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the solution of Laplace equation. The only remaining complexity that remains is the satisfaction of the boundary
conditions. In the rest of this chapter, we will focus on two-dimensional incompressible irrotational flow.

Irrotationality in two dimension implies for the components of velocity u = (u, v)

∇× u =

(
∂v

∂x
− ∂u

∂y

)
êz = 0 ⇐⇒ u =

∂ϕ

∂x
, v =

∂ϕ

∂y
. (6.6)

Similarly, incompressibility implies

∇ · u =
∂u

∂x
+
∂v

∂y
= 0 ⇐⇒ u =

∂ψ

∂y
, v = −∂ψ

∂x
, (6.7)

where ψ is a field called stream function.

This type of reciprocal relation between the deriviatives of two scalar functions, in our case ϕ and ψ, are
called the Cauchy-Reimann conditions:

∂ϕ

∂x
=
∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
. (6.8)

Owing to this relation, both ϕ and ψ satisfy Laplace equation, i.e., ∇2ϕ = ∇2ψ = 0. Furthermore, ϕ and ψ are
the real and imaginary part of a holomorphic function w of the complex variable z, i.e.

w(z) = ϕ(x, y) + iψ(x, y), where z = x+ iy. (6.9)

Thus, the strategy for generating potential flows is to construct holomorphic functions w(z) called complex
potentials that satisfy the necessary boundary condition. The fluid velocity is given by the relation

u− iv =
dw

dz
. (6.10)

Here are some geometric relations between ϕ, ψ and streamlines.

6.2.1 Stream function and streamlines

Contours of constant stream function are streamlines of the flow. To see this, consider the directional derivative
of the stream function in the direction of the streamline, i.e. in the direction of velocity

∇ψ · u =
∂ψ

∂x
u+

∂ψ

∂y
v = −vu+ uv = 0. (6.11)

Thus, irrespective of location in the flow, ψ does not vary in the direction of streamlines. Therefore, ψ is a
constant along a streamline. In other words, streamlines are contours of constant stream function.

6.2.2 Stream function and velocity potential

Contours of constant stream function and those of constant velocity potential meet orthogonally. To see this,
consider the dot product of ∇ϕ and ∇ψ, the normals of the contours at a given point:

∇ϕ ·∇ψ =
∂ψ

∂x

∂ϕ

∂x
+
∂ψ

∂y

∂ϕ

∂y
= 0. (6.12)

Since the normals are orthogonal, the tangents must be too, and therefore the curves must be too.

6.3 Elementary complex potentials

Some basic elements that are used to construct the complex potentials.
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6.3.1 Uniform flow

Consider the complex potential

w(z) = Ue−iαz =⇒ ϕ = U(x cosα+ y sinα), ψ = U(y cosα− x sinα). (6.13)

The flow velocity corresponding to this potential is

u = U cosα, v = U sinα, (6.14)

i.e., a uniform flow at an angle α to the x-axis. An example of this flow is shown in Figure 6.1(a).
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Figure 6.1: Visualization of Elementary flows. Streamlines are in blue and equipotential lines are in red. (a)
Uniform flow at an angle of 30◦ to the x-axis. Potential w(z) = zeiπ/6. (b) Flow due to a point source. Potential
w(z) = log z. (c) Flow due to a point vortex. Potential w(z) = i log z. (d) Flow due to a point dipole. Potential
w(z) = 1/z. The black circle in panels (b) and (c) depicts the contour used for illustrating the concentrated
nature of the point source and vortex.

6.3.2 Point source

Consider the complex potential

w(z) =
Q

2π
log z =⇒ ϕ =

Q

2π
log r, ψ =

Qθ

2π
, (6.15)

where z = riθ is the polar representation of the complex variable z. The flow velocity corresponding to this
potential is

u =
Q

2πr
êr, (6.16)

i.e., a radially outward flow decaying inversely proportional with distance. An example of this flow is shown in
Figure 6.1(b). For what follows, let u · êr = ur and u · êθ = uθ.
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To understand why the flow corresponding to this potential is termed as the point source, consider the
divergence and curl of the velocity field:

∇ · u =
1

r

(
∂(rur)

∂r
+
∂uθ
∂θ

)
= 0, (6.17)

∇× u =
1

r

(
∂(ruθ)

∂r
− ∂ur

∂θ

)
êz = 0 (6.18)

for r > 0, but this calculation says nothing about r = 0. To deduce that, consider the line integrals along the
circle of radius r

∫

C

u · n̂ ds =

∫ 2π

0

Q

2πr
êr · êr rdθ = Q, (6.19)

∫

C

u · t̂ ds =
∫ 2π

0

Q

2πr
êr · êθ rdθ = 0, (6.20)

where n̂ and t̂ are the unit normal and tangential vectors to the curve C. Given that, due to the divergence
and Stokes theorems, respectively,

∫

C

u · n̂ ds =

∫

A

∇ · u dA, and (6.21)

∫

C

u · n̂ ds =

∫

A

(∇× ·u) · êz dA, (6.22)

the inesacapable conclusion is that for this flow∇·u = Qδ(x), where δ is the Dirac-delta function and∇×u = 0.
Thus, this flow is irrotational everywhere, but incompressible only for r > 0. Volume is not conserved at r = 0,
but instead is generated there. Hence the terminology to describe this flow as a “point source”.

6.3.3 Point vortex

Consider the complex potential

w(z) = − iΓ

2π
log z =⇒ ϕ =

Γθ

2π
, ψ = − Γ

2π
log r. (6.23)

The flow velocity corresponding to this potential is

u =
Q

2πr
êθ, (6.24)

i.e., an azimuthal flow decaying inversely proportional with distance. An example of this flow is shown in
Figure 6.1(c).

We again examine ∇ ·u and ∇×u to understand the terminology associated with this flow. Just as for the
point source,

∇ · u =
1

r

(
∂(rur)

∂r
+
∂uθ
∂θ

)
= 0, (6.25)

∇× u =
1

r

(
∂(ruθ)

∂r
− ∂ur

∂θ

)
êz = 0 (6.26)

for r > 0, but which says nothing about r = 0. The line integrals along the circle of radius r

∫

C

u · n̂ ds =

∫ 2π

0

Γ

2πr
êθ · êr rdθ = 0, (6.27)

∫

C

u · t̂ ds =
∫ 2π

0

Γ

2πr
êθ · êθ rdθ = Γ, (6.28)

which, in view of (6.21-6.22) lead to the inescable conclusion that the flow is incompressible everywhere but
irrotational only for r > 0. The vorticity is, in fact, ∇× u = Γδ(x)êz. Hence the flow due to this potential is
termed as the “point vortex”.
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6.3.4 Point dipole

The flow constructed by the linear superposition of a point source and an equal point sink (i.e., a source with
negative strength) located vanishingly small distances apart constitutes a point dipole. The complex potential
is constructed as

w(z) = lim
ϵ→0

Q

2π
(log(z + ϵ)− log(z − ϵ)) . (6.29)

Of course, in the limit ϵ → 0, the potential would vanish, unless the source-sink pair also strengthened in the
process. In particular, let Q = D/(2ϵ), so that the source-sink pair strength is inversely proportional to the
distance between them. Here D is the strength of the point dipole. With this assumption,

w(z) = lim
ϵ→0

D

2π

(
log(z + ϵ)− log(z − ϵ)

2ϵ

)
=

D

2πz
. (6.30)

The flow due to the point dipole is depicted in Figure 6.1(d). The streamlines and equipotential lines are both
sets of circles that are tangential to the x and y axes, respectively, at the origin.

6.3.5 Higher multipoles

Note that, due to its construction, the potential due to a point dipole is the derivative of the potential due to a
point source. This can be extended to higher orders called “multipoles”. For example, a point quadrupole is a
point dipole of point dipoles with a complex potential proportional to 1/z2. And octupole is a point dipole of
quadrupoles with potential 1/z3. And so on.

In this manner, the general complex potential with the farfield approaching uniform flow may be written as

w(z) = Uz +
Q− iΓ

2π
log z +

a1
z

+
a2
z2

+
a3
z3

+ . . . . (6.31)

Here, the coefficients U , Q, Γ, a1, a2, etc, may be functions of time.

6.4 Potential flow past immersed bodies

The coefficients Q, Γ, a1, a2, . . . , may be chosen to construct the complex potential for flow past bodies. Here
are some examples.

6.4.1 Rankine half-body

The linear superposition of a uniform flow and a point source may be used to represent flow past a semi-infinite
body, called the Rankine half-body. The complex potential is

w(z) = Uz +
Q

2π
log z. (6.32)

The flow streamlines and equipotential lines are shown in Figure 6.2(a). Any region of the plane on one side
of a streamline may be replaced by a solid body and the complex potential in the remaining region describs
potential flow past this solid body. For example, consider the streamline given by ψ = Q/2, where

ψ = Im(w) = Ur sin θ +
Qθ

2π
so the streamline is r =

Q(π − θ)

2πU sin θ
. (6.33)

The streamline is shown in Figure 6.2(b) and the area inside the streamline, shaded blue in the figure, is the
Rankine half-body. The complex potential w(z) in (6.32) describes the flow past this Rankine half-body.

6.4.2 Rankine oval

The linear superposition of a uniform flow, a point source and a point sink may be used to represent flow past
a finite body, called the Rankine oval. The complex potential is

w(z) = Uz +
Q

2π
(log(z − 1)− log(z + 1)) . (6.34)
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Figure 6.2: Flow around a Rankine half-body. (a) The flow streamlines (blue) and equipotential lines (red) for
the potential given by (6.32) for U = 1 and Q = π. (b) Same as (a) but with the streamline ψ = Q/2 drawn in
solid black and the area inside this streamline shaded in blue. The shaded region is the Rankine half-body.

The flow streamlines and equipotential lines are shown in Figure 6.3(a). Consider the streamline given by ψ = 0,
where

ψ = Im(w) = Ur sin θ +
Q(θ1 − θ2)

2π
so the streamline is given by Ur sin θ +

Q(θ1 − θ2)

2π
= 0, (6.35)

where tan θ1 = r sin θ/(r cos θ + 1) and tan θ2 = r sin θ/(r cos θ − 1). The streamline is shown in Figure 6.3(b)
and the area inside the streamline, shaded blue in the figure, is the Rankine oval. The complex potential w(z)
in (6.34) describes the flow past this Rankine oval.

6.4.3 Circle

The Rankine oval approaches a circle as the source and the sink approach each other to form a dipole. The
complex potential in this case is

w(z) = U

(
z +

a2

z

)
. (6.36)

The flow streamlines and equipotential lines are shown in Figure 6.4(a). Consider the streamline given by ψ = 0,
where

ψ = Im(w) = U sin θ

(
r − a2

r

)
, so that ψ = 0 on r = a. (6.37)

The streamline is shown in Figure 6.4(b) and the area inside the streamline, shaded blue in the figure, is a circle
of radius a. The complex potential w(z) in (6.36) describes the flow past this circle.

An arbitrary point vortex centered at the center of the circle may be added to the mix without violating
the boundary condition on the circle. The most general potential flow around a circle is given by

w(z) = U

(
z +

a2

z

)
− iΓ

2π
log z. (6.38)

Here Γ is the circulation around the circle, perhaps due to the spinning of the circle. The flow due to this
potential is shown in Figure 6.4(c).
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Figure 6.3: Flow around a Rankine oval. (a) The flow streamlines (blue) and equipotential lines (red) for the
potential given by (6.34) for U = 1 and Q = π. (b) Same as (a) but with the streamline ψ = 0 drawn in solid
black and the area inside this streamline shaded in blue. The shaded region is the Rankine half-body.

6.5 Force on a immersed body

The force on the body due to the potential flow (6.31) may be calculated by integrating the force due to the
fluid pressure. The force on the body per unit length out of the plane of the paper is

F =

∫

C

−pn̂ ds, (6.39)

where C is the bounding closed streamline defining the body. The fluid pressure is determined by Bernoulli
equations as

p = −ρ
(
∂ϕ

∂t
+

1

2
|u|2

)
+ ρg · x, (6.40)

The contribution to the force due to gravity is the force of buoyancy from Archimedes principle. Here we
calculate the contribution from the remaining two terms.

6.5.1 Force in a steady potential flow

In steady potential flow, only the term ρ|u|2/2 contributes to the net unbalanced force beyond buoyancy. In
complex variables, let the components of the force F = Fxêx+Fyêy be written as Fx+ iFy. If the tangent to C
makes an angle θ to the x-axis, then u = |u|eiθ because the flow is tangential to the streamline. Also, because
the components of velocity are w′(z) = u− iv = |u|e−iθ, |u|2 = w′(z)2e2iθ. The product of the unit normal and
the infinitesimal line element is −ieiθ ds. The complex conjugate of the force is

Fx − iFy =

∫

C

1

2
ρw′(z)2e2iθ (ie−iθ ds) =

iρ

2

∫

C

w′(z)2 dz, (6.41)

where the complex integration infinitesimal dz = eiθ ds.

Using this expression for force, and substituting (6.31) in (6.41) yields

Fx − iFy = −ρU(Q− iΓ), (6.42)
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Figure 6.4: Flow around a Rankine oval. (a) The flow streamlines (blue) and equipotential lines (red) for the
potential given by (6.36) for U = 1 and a = 1. (b) Same as (a) but with the streamline ψ = 0 drawn in solid
black and the area inside this streamline shaded in blue. The shaded region is a circle. (c) The flow around a
spinning circle corresponding to the complex potential given by (6.38) for U = 1, a = 1, Γ = 2π.

where Cauchy’s residue theorem is employed for calculating the contour integral. Law of conservation of mass
demands that for a body immersed in the flow Q = 0, and therefore,

Fx = 0 and Fy = −ρUΓ. (6.43)

The drag on an object is the force it experiences in the direction of the flow, while the lift is the force
perpendicular to the flow. According to (6.43), the lift on an immersed body due to the potential flow is ρUΓ,
which is the statement of the Kutta-Joukowsky (also spelled Joukowski, Zhukowski or Zhukovsky) theorem in
aerodynamics. The lift on the spinning circle, due to this theorem, is ρUΓ.

The fact that a body immersed in a potential flow does not experience any drag is the subject of the
D’Alembert paradox. Neither the Rankine oval, nor the circle, nor body of any other shape experiences any
drag in potential flow. D’Alembert paradox exist because potential flow does not satisfy the no-slip condition.
The friction of a viscous fluid with the solid boundary generates vorticity, which is transported by the fluid to
regions away from the immersed body. In this manner, application of the no-slip boundary condition on viscous
fluids invalidates the assumptions underlying potential flow, especially that the flow be irrotational. In fact,
the shedding of vorticity into the flow is the origin of fluid dynamical drag (this we state without proof at this
point).
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Figure 6.5: Flow around an airfoil at an angle of attack computed using the commercial software COMSOL.
The streamlines are shown in blue, and the black curve is the stagnation streamline, part of which makes the
airfoil shape. The angle of attack for this case is 14◦.

6.5.2 Added mass from the unsteady term

Consider the contribution of the term ρ
∂ϕ

∂t
. The resulting force is

∫

C

ρ
∂ϕ

∂t
n̂ ds. (6.44)

Let us examine this expression for the case of flow around a circle, so that w(z) is given by (6.36). This
corresponds to

ϕ = Re(w) = U cos θ

(
r +

a2

r

)
, which on r = a is ϕ = 2Ua cos θ. (6.45)

The integral for force yields

F =

∫ 2π

0

2ρ
dU

dt
a cos θ(cos θêx + sin θêy)a dθ = ρπa2

dU

dt
êx. (6.46)

This result may be interpreted in the following way. Any acceleration of the circle implies an acceleration of
the fluid around it. This acceleration needs an additional force proportional to the acceleration. The coeffient
of proportionality between this additional force and the acceleration is the “added mass” the fluid presents to
the motion of the circle. In this case, the added mass in ρπa2.

6.6 Flow around an airfoil

The lift generated by an airfoil is a central result in aerodynamics, which makes use of potential flow. Some
salient features of this flow are visualized in Figure 6.5. The stagnation streamline is incident on the lower
surface of the airfoil, which develops the stagnation pressure under the airfoil. The streamlines curve around
the leading edge of the airfoil, generating a low-pressure area above the airfoil. Finally and crucially, note that
the stagnation streamline separates from the plate at the trailing edge. These are the features that will guide
us in constructing the appropriate potential flow.

Here we will present one calculation, that of the lift on the prototypical airfoil – a flat plate, which hightlights
this central result. The underlying potential flow is constructed in this case using a technique known as conformal
mapping (the same technique can be used to construct flow around airfoils of other shapes).

A conformal map is a map between two complex variables, which we take to be z and ζ. Here z = x + iy
corresponds to the physical spatial variable, in which the flat plate exists, and ζ is the mapped variable, in
which the flat plate is mapped to a circle. The particular map we use is called the Joukowsky map:

z = f(ζ) = (1 + ϵ)ζ + (1− ϵ)
a2

ζ
. (6.47)
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A circle in ζ-plane, ζ = aeiθ is mapped to

z = a(1 + ϵ)eiθ + a(1− ϵ)e−iθ = 2a cos θ + 2iaϵ sin θ, (6.48)

which is an ellipse of major axis 2a along the x-axis and minor axis 2aϵ along the y-axis. In the limit ϵ → 0,
the ellipse approaches a flat plate −2a ≤ x ≤ 2a. The point ζ = a is mapped to the trailing edge of the plate
z = 2a. The chord of the flat plate is c = 4a.

While it is possible to solve for the inverse map ζ = f−1(z) in closed form, the idea is to not need the explicit
expression for the inverse. However, we do need the inverse map to be analytic so that the complex potential

W (z) = w
(
f−1(z)

)
(6.49)

automatically deforms the streamlines and converts the circular streamine in the ζ coordinates to be a flat plate
in the z coordinates, whilst preserving the analyticity of the complex potential.
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Figure 6.6: Flow around a flat plate at an angle of 30◦ to the flow and Γ = 0. (a) The flow in the ζ = ξ + iη
coordinates. Streamlines are in blue and equipotential lines in red. Black curve shows the stagnation streamline.
(b) The same flow in the z = x+ iy coordinates.

We start with the complex potential (6.38) for flow around a circle, but now expressed in ζ and with an
angle of attack α, i.e.,

w(ζ) = U

(
ζe−iα +

a2

ζe−iα

)
− iΓ

2π
log ζ. (6.50)

As ζ → ∞, the largest term in w(ζ) is Uζe−iα, corresponding with uniform flow at an angle α to the flat plate.
The complex velocity in the ζ plane is

w′(ζ) = U

(
e−iα − a2

ζ2
eiα
)
− iΓ

2πζ
. (6.51)

The velocity in the z-coordinates is

dW

dz
=
w′(ζ)
z′(ζ)

=

U

(
e−iα − a2

ζ2
eiα
)
− iΓ

2πζ

1− a2

ζ2

. (6.52)
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As ζ → ∞, dW/dz approaches U .

Consider the case Γ = 0. An example of the flow corresponding to this case is shown in Figure 6.6. Note
that the stagnation point in the ζ-plane is at ζ = ±aeiα. This point maps in the z-plane to z = −2a cosα below
the flat plate, and z = 2a cosα above it. Note that in this flow, the stagnation streamline does not separate
from the trailing edge z = 2a.

The stagnation point may be moved by judiciously choosing the value of Γ. The condition that the trailing
edge be the rear stagnation point is called the Kutta condition. We impose the Kutta condition by ensuring
that the stagnation point in the ζ-coordinates is at ζ = a. Substituting the velocity w′(ζ) = 0 at ζ = a yields

Γ = −4πUa sinα (6.53)

The streamlines and equipotential lines corresponding to the value of Γ that enforces the Kutta condition, shown
in Figure 6.7, illustrate this condition.
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Figure 6.7: Flow around a flat plate at an angle of 30◦ to the flow and Γ given by (6.53). (a) The flow in the
ζ = ξ+ iη coordinates. Streamlines are in blue and equipotential lines in red. Black curve shows the stagnation
streamline. (b) The same flow in the z = x+ iy coordinates.

The lift Fy on the falt-plate is given by

Fy = −ρUΓ = 4πρU2a sinα. (6.54)

This result can be converted to a dimensionless form in terms of the coefficient of lift, CL, defined as

CL =
Fy

1

2
ρU2c

. (6.55)

Using the result (6.54), the lift coefficient depends on the angle of attack as

CL =
4πρU2a sinα
1

2
ρU2(4a)

= 2π sinα. (6.56)

Figure 6.8 shows that the results of (6.56) compare well with the lift coefficient computed using the commercial
software COMSOL for small α. The agreement worsens around α ≈ 10◦ due to a phenomenon called stall, in
which the stagnation streamline also separates from the leading edge. A careful treatment of the influence of
viscosity is needed to gain a deeper understanding of stall.
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Figure 6.8: Lift coefficient CL as a function of angle of attack α. Blue circles show the lift calculated from
computations in COMSOL. Black line shows results of (6.56).



Chapter 7

Boundary layers

Boundary layers are regions of space adjacent to boundaries of fluid domains where affects of viscosity may not
be ignored no matter how small the coefficient of viscosity may be. The characteristics of and the dynamics
within boundary layers are of interest especially when the coefficient of viscosity is vanishlingly small. The
example of the boundary layer next to a flat plate aligned with the flow, the topic of this chapter, illustrates
the essential features.

7.1 Flow next to a flat plate

Consider a uniform flow of speed U along the x-axis being incident on a flat plate of infinitesimal thickness and
length L aligned with the flow, as schematically shown in Figure 7.1. The plate is oriented perpendicular to the
plane of paper. The fluid has viscosity µ and density ρ. We ignore gravity in this example. The potential flow
u = U êx with a uniform pressure satisfies mass and momentum conservation, and the no-penetration condition
on the flat plate, but not the no-slip condition. For an inviscid fluid, this is a perfectly valid flow, but not for a
viscous fluid, no matter how small the viscosity coefficient. In this manner, this example offers the opportunity
to study how the imposition of the no-slip condition modifies the simplest of potential flows in the presence of
the slightest of viscosity. Hence, we choose a vanishingly small coefficient of viscosity µ.

boundary layer

Figure 7.1: Schematic of a flow past a flat plate aligned with the flow. Here the thickness of the boundary layer
is denoted as δ.

7.1.1 Qualitative description of the flow

Let us first develop a picture of the dynamics of this flow in our minds. The approach we take is to make
various assumptions about the flow now and verify them later. This flow is driven by the inertia of the fluid
in the freestream. The fluid particles away from the plate start out with speed U and will continue to do so
unless an unbalanced force makes them decelerate. The action of the no-slip boundary condition and the shear
stress that develops in the fluid is expected to slow down the fluid in the vicinity of the flat plate. A typical
profile u versus y is shown in Figure 7.1. The boundary layer, the region where the flow speed appreciably falls

67
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Figure 7.3: Collapse of the profiles of u versus y when rescaled. Each of the curves in Figure 7.2 is plotted as
the coloured curves in this figure. Here δ is from (7.18). The dashed black curve corresponds to the solution of
(7.24-7.25).

blow the freestream value U , is expected to be of thickness δ that is also vanishingly small with the coefficient
of viscosity. Outside this layer, we expect the flow to be approximately uniform, and certainly described by
potential flow. A natural consequence of the slowing down of the flow in the boundary layer is that the fluid
upstream that is incident just above the plate now needs to be deflected away from the plate. Therefore, a y
components of velocity also naturally appears in the flow. However, because of the thinness of the boundary
layer, the amount of deflection is weak and the y component is expected to be smaller in magnitude than the
x component.

A computational solution of Navier-Stokes equations is used to assist with the qualitative description of the
flow. The commercial finite elements software COMSOL is used to obtain the solution. The particular case
considered is for L = 5 cm, ρ = 1 kg/m3 and several values for µ and U (listed in Figure 7.2. The plate in this
case has a finite thickness equal to 1/64 the length. The computational box is chosen to be 10 cm × 10 cm.
(See the LectureCapture video from March 6, 2020, for more details.)

To obtain some insight into the thickness of the boundary layer, Figure 7.2 shows the computed profiles of
velocity for different values of U and ν. It is evident that increasing U decreases δ, while increasing µ increases
it. The growth of the boundary layer with x, the distance form the leading edge, is also evident. These are the
features we seek to explain in the subsequent analysis.

A scaling estimate for δ may be made in the folowing way. A fluid particle starting from the leading edge of
the plate traveling with speed U takes time t = x/U to traverse the distance x. Perpendicular to the direction
of travel, viscosity influences a distance δ =

√
νt in time t, where ν = µ/ρ is the kinematic viscosity. In this

case, this implies δ =
√
νx/U . Miraculously, replotting a rescaled version of the data shown in Figure 7.2

collapses each one of those profiles of u versus y very close to a universal curves. Figure 7.3 demonstrates this
collapse where y is rescaled using δ(x) and u with U . To explain this miraculous collapse, to determine the
universal shape the velocity collapses to, and to better understand the underlying fluid dynamics, we proceed
with certain simplifying assumptions about the flow.

It can be seen from this estimate that the boundary layer becomes vanishingly thin as ν approaches zero. The
slope of the growing boundary layer thickness is proportional to δ/x, and therefore, we expect the y component
of velocity to be of the magnitude Uδ/x. Subsequent analysis proceeds under the assumption that δ is much
smaller than L in the following analysis to derive the so-called Prandtl boundary-layer equations.

7.1.2 Derivation of the Prandtl boundary layer equations

In the limit of small viscosity, and especially due to the boundary layer being thinner than the length of the
plate, the governing Navier-Stokes equations simplify to the simpler Prandtl boundary layer equations. To
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Equation Terms and their magnitudes

Mass conservation (7.1a)
∂u

∂x
∼ U

L

∂v

∂y
∼ V

δ

x-momentum conservation (7.1b) ρu
∂u

∂x
∼ ρU2

L
ρv
∂u

∂y
∼ ρUV

δ

∂p

∂x
∼ P

L
µ
∂2u

∂x2
∼ µU

L2
µ
∂2u

∂y2
∼ µU

δ2

y-momentum conservation (7.1c) ρu
∂v

∂x
∼ ρUV

L
ρv
∂v

∂y
∼ ρV 2

δ

∂p

∂y
∼ P

δ
µ
∂2v

∂x2
∼ µV

L2
µ
∂2v

∂y2
∼ µV

δ2

(magnitudes of (7.1c) simplified)
ρU2

L

1√
Re

ρU2

L

1√
Re

ρU2

L

√
Re

ρU2

L

1√
Re3

ρU2

L

1√
Re

Table 7.1: Scaling estimate of the magnitude of terms in (7.1).

derive them, let us start with the steady two-dimensional Navier-Stokes equations

∂u

∂x
+
∂v

∂y
= 0, (7.1a)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (7.1b)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (7.1c)

Noting the reflection symmetry of the flow around y = 0, we only solve for u, v and p for y >= 0. These
equations are to be solved with the boundary conditions

u(x ≥ 0, y = 0) = 0, (7.2a)

v(x ≥ 0, y = 0) = 0, (7.2b)

u(x, y → ∞) = U. (7.2c)

Scaling estimate of the size of terms in Navier-Stokes equations

The first step is to develop a scaling estimate for each of the terms in these equations. Here our objective is to
identify how each term in (7.1) scales with the parameters of the problem, viz., ρ, µ, U and L, and then balance
the magnitudes of the dominant terms.

Each dependent and independent variable is assigned a constant magnitude in terms of the parameters
governing the problem. For example, the magnitude of u is taken to be U , expressed as u ∼ U . Similarly, the
scale for x is taken to be L, i.e. x ∼ L. We do not yet know the magnitudes for v, y and p, so we define symbols
V , δ and P , respectively, to represent them. The magnitudes of partial derivatives are estimated using ratios

of the variables in the derivative, e.g.,
∂u

∂x
∼ U

L
. Our task is to express these undefined symbols in terms of the

known parameters using dominant balances.

As an illustration, consider the mass conservation equation (7.1a). The magnitude of the two terms in this
equation are presented in the second row of Table 7.1. Balancing the magnitudes of the two terms yields the
magnitude for v as

U

L
=
V

δ
=⇒ V =

Uδ

L
. (7.3)

Note that this is consistent with our estimates in the simple picture in §7.1.1.

Table 7.1 also shows the magnitude estimates for the momentum conservation equations in (7.1). Using
(7.3), it is evident that in (7.1b)

ρU2

L
=
ρUV

δ
, (7.4)
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implying that both the terms ρu
∂u

∂x
and ρv

∂u

∂y
are of equal magnitude. Furthermore, given that the pressure

field is established to enforce incompressibility, its magnitude is set up to balance the strongest term in the

equations. This implies that the ρu
∂u

∂x
is of a magnitude comparable to

∂p

∂x
, or

P

L
=
ρU2

L
=⇒ P = ρU2. (7.5)

Between the two viscous terms, µ
∂2u

∂x2
and µ

∂2u

∂y2
, which scale as µU/L2 and µU/δ2, respectively, because δ ≪ L

it is evident that, µ
∂2u

∂x2
≪ µ

∂2u

∂y2
. Thus, the term µ

∂2u

∂x2
is perhaps negligible compared to at least one other

term in (7.1b). Neglecting the µ
∂2u

∂y2
also will render the dominant balance equivalent to that of an inviscid

fluid, which is contrary to our original intention of studying the influence of viscosity. Therefore, balancing the

dominant of the two viscous terms µ
∂2u

∂y2
with the inertial terms yields

ρU2

L
=
µU

δ2
=⇒ δ =

√
νL

U
. (7.6)

This expression is eerily similar to one derived in §7.1.1, except that x is replaced by L. We can now verify our
assumption

δ

L
≪ 1 ⇐⇒

√
ν

UL
= Re−1/2 ≪ 1 ⇐⇒ Re ≫ 1, (7.7)

where we defne the Reynolds number Re = UL/ν.

We now turn our attention to (7.1c). Substituting V from (7.3) and P from (7.5) into (7.1c) yields the
magnitude of every term in (7.1c). In light of the assumption δ ≪ L yields the most dominant term in that

equation to be
∂p

∂y
, which scales as

ρU2

L
×

√
Re, while all the other terms are negligible in comparison. See

Table 7.1 for details.

With these estimates, (7.1) simplify to

∂u

∂x
+
∂v

∂y
= 0, (7.8a)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

∂2u

∂y2
, (7.8b)

0 = −∂p
∂y
, (7.8c)

which are subject to boundary conditions given by (7.2). The set of equations (7.8) are known as the Prandtl
boundary-layer equations after Ludwig Prandtl, who first identified the presence of boundary layers in high
Reynolds number flow of viscous fluids, and the approximation leading to them is called the Prandtl boundary-
layer approximation.

For flow past a flat plate, the flow is uniform outside the boundary layer, and consequently the pressure is

uniform there. Combined with (7.8c), this implies that the pressure is uniform everywhere and
∂p

∂x
= 0. Thus,

for the case of flow past a flat plate, (7.8) simplify further to

∂u

∂x
+
∂v

∂y
= 0, (7.9a)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
. (7.9b)

7.1.3 Self-similar flow past a semi-infinite flat plate

In a region closer to the leading edge of the plate, say a distance x, which is much larger than ν/U but much
smaller than the plate length, L, a self-similar structure emerges for the flow. We expose this structure in this
section.
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Scale invariance

The scale invariance of the geometry of the flow past a long plate, approximated as semi-infinite, is evident.
Upon zooming out, the plate appears semi-infinite and the uniform flow remains uniform. The governing
dynamics in the boundary layer are also scale invariant. To see this, rescale the variables in (7.9) and (7.2) as

u = αũ, v = βṽ, x = γx̃ and y = δỹ, (7.10)

where α, β, γ and δ are positive transformation factors. The rescaled equations (7.9) and (7.2) are

α

γ

∂ũ

∂x̃
+
β

δ

∂ṽ

∂ỹ
= 0, (7.11a)

α2

γ
ũ
∂ũ

∂x̃
+
αβ

δ
ṽ
∂ũ

∂ỹ
=

α

δ2
ν
∂2ũ

∂ỹ2
, (7.11b)

and

αũ(αx̃ ≥ 0, δỹ = 0) = 0, =⇒ ũ(x̃ ≥ 0, ỹ = 0) = 0 (7.12a)

βṽ(αx̃ ≥ 0, δỹ = 0) = 0, =⇒ ṽ(x̃ ≥ 0, ỹ = 0) = 0 (7.12b)

αũ(αx̃, δỹ → ∞) = U. =⇒ ũ(x̃, ỹ → ∞) =
U

α
(7.12c)

Equation (7.11) and (7.12) are identical to (7.9) and (7.2) if

β

δ
=
α

γ
,

α2

γ
=

α

δ2
, and α = 1. (7.13)

These relations between the scaling factors are satisfied if α = 1, δ =
√
γ and β = 1/

√
γ, irrespective of the value

of γ. This demonstrates the invariance of the governing equations, and thereby the flow, to the (anisotropic)
scaling of the independent and dependent variables.

The scale invariance implies that the flow velocity at points related by the transformation is also related. In
particular, If the functional form of u(x, y) is given by u(x, y) = F (x, y), then an indetical form descrives the
velocity in the transformed coordinates, i.e., ũ(x̃, ỹ) = F (x̃, ỹ). Given the relation between u and ũ from (7.10),

F (x, y) = αF (x̃, ỹ) = αF

(
x

γ
,
y

δ

)
. (7.14)

Expressing α and δ in terms of γ and F in terms of u yields

u(x, y) = u

(
x

γ
,
y√
γ

)
. (7.15)

Choosing γ = x reduces this relation to a form useful for our interpretation as

u(x, y) = u

(
1,

y√
x

)
. (7.16)

This equation states that the profile of u versus y at any location x is related to that at x = 1 (arbitrary units)
by a simple rescaling of y by

√
x. Similarly,

v(x, y) =
1√
x
v

(
1,

y√
x

)
. (7.17)

In this way, we expect the velocity profile to not be independently dependent on x and y, but merely on the
combination y/

√
x alone.

Determination of the Blasius self-similar profile

Once the possibility of self-similarity is established, the following approach can be used to simplify the governing
equations. First, a precursory method incorporates the dependence of the dimensional parameters into the
scaling invariance. At this stage, we simply replace derivatives in (7.9) with ratios, and replace the dependent
and independent variables with the scaling estimates in terms of known problem parameters, very similar to
scaling estimates in §7.1.2. In this analysis, armed by the knowledge of scale invariance, we recognize that x
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itself represents the scale for the independent variable x, and δ(x) for y. The scales for u and v are U and
Uδ(x)/x, respectively, in view of (7.9a). The dominant balance between terms in (7.9b) is

U2

x
= 2ν

U

δ(x)2
=⇒ δ(x) =

√
2νx

U
, (7.18)

in agreement with the intuition presented in §7.1.1, except for the factor of 2. (The explanation for this factor
being an algebraic convenience will appear soon.) This approach also explains the appearance of L in the
expression for δ in (7.6) instead of x as in (7.18). Because of the scale-invariance, the plate length L is not the
appropriate scale for x, but x itself is. Apart from this difference, the balance of terms that led to (7.18) and
(7.6) are identical. Equation (7.18) now incorporates the dimensional dependence on the parameters ν and U .

We proceed to determine the self-similar flow profile by incorporating the results (7.18) and (7.16) by
asserting that

u = Uf ′(ξ), where ξ =
y

δ(x)
. (7.19)

Here the variables ξ and f(ξ) are dimensionless and ′ denotes differentiation with respect to the argument.
There exist multiple equivalent formulations, which represent the same flow, from which we choose one. To
facilitate the subsequent analysis, note that

dδ

dx
=

√
ν

2Ux
=

δ

2x
so

∂ξ

∂x
= − y

δ2
δ′(x) = − ξ

2x
and

∂ξ

∂y
=

1

δ
. (7.20)

Using (7.20),

∂u

∂x
= Uf ′′(ξ)

∂ξ

∂x
= − U

2x
ξf ′′(ξ), (7.21a)

∂u

∂y
= Uf ′′(ξ)

∂ξ

∂y
=
U

δ
f ′′(ξ), (7.21b)

∂2u

∂y2
=
U

δ2
f ′′′(ξ), (7.21c)

∂v

∂y
=

1

δ

∂v

∂ξ
. (7.21d)

Substitution into (7.9a) yields

∂v

∂ξ
= U

δ

2x
ξf ′′(ξ), =⇒ v = U

δ

2x
(ξf ′(ξ)− f(ξ)) . (7.22)

Substituting (7.19) and (7.22) in (7.9b) yields

U2

2x
(−ξf ′(ξ)f ′′(ξ) + (ξf ′(ξ)− f(ξ)) f ′′(ξ)) = ν

U

δ2
f ′′′(ξ). (7.23)

This equation reveals the utility of the dominant balance using scaling. Note that in (7.18) we balanced the
terms U2/x and νU/δ2, which are also the dimensional pre-factors of the terms in (7.23). The additional factor
of 2 in (7.18) is simply to account for the factor of 2 that arises in (7.23) – this factor is not necessary for deriving
the self-similar flow profile. The essential reason underlying the utility of the method to derive (7.18) is that,
according to the chain rule applied in (7.20) and (7.21), differentiation with respect to x yields a dimensional
factor of 1/x, and with respect to y yields 1/δ. These were precisely the rules we used to derive (7.18).

In view of (7.18), equation (7.23) simplifies to

f ′′′(ξ) + f(ξ)f ′′(ξ) = 0. (7.24)

The boundary conditions (7.2) simplify to

f ′(ξ = 0) = 0, (7.25a)

f(ξ = 0) = 0, (7.25b)

f ′(ξ → ∞) = 1. (7.25c)

Equations (7.24-7.25) are called the Blasius equations for the self-similar profile. They constitute an ordinary
differential boundary value problem, which cannot be solved in closed form analytically but can be easily solved
numerically. The solution is shown in Figure 7.3 as the dashed curve, which agrees very well with the numerically
computed profiles.
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µ (Pa s) /
U (m/s)

µ = 10−5 3× 10−5 5× 10−5

U = 1.0 4.13 7.85 10.6
U = 1.3 5.99 11.4 15.4
U = 1.6 8.04 15.3 20.6
U = 1.9 10.3 19.5 26.3

µ (Pa s) /
U (m/s)

µ = 10−5 3× 10−5 5× 10−5

U = 1.0 4.70 8.13 10.5
U = 1.3 6.96 12.1 15.6
U = 1.6 9.50 16.5 21.2
U = 1.9 12.3 21.3 27.5

Table 7.2: Drag on the plate computed using COMSOL (left) compared with the result of the boundary layer
approximation (7.29) (right).

7.1.4 Drag on the plate

With the complete flow field described analytically, we now return to our original motivation of estimating the
drag on the plate because of viscous shear stress. The uniform potential flow violates the no-slip boundary
condition and, in the process, also fails to account for the drag on the plate. The boundary layer approximation
retains the no-slip condition, and thus might be able to explain the drag on the plate.

The drag on the upper surface of the plate is calculated by integrating the tangential component of the shear
stress. The components of the total (i.e., Cauchy) stress tensor are

T = −p
[
1 0
0 1

]
+ µ




2
∂u

∂x

∂u

∂y
+
∂v

∂x
∂u

∂y
+
∂v

∂x
2
∂v

∂y


 . (7.26)

The tangential component of the traction on the plate is

êx · T · êy = µ

(
∂u

∂y
+
∂v

∂x

)
≈ µ

∂u

∂y
. (7.27)

Note that the component of stress due to pressure does not exert a tangential force on the plate. And using

scaling estimates developed in §7.1.2, amongst the terms in (7.27),
∂u

∂y
scales as U/δ and dominates over

∂v

∂x
,

which scales as V/L = Uδ/L2. Therefore, to the level of approximation we have retained, the term
∂v

∂x
may be

neglected.

The total force, D, per unit length out of the plane of the paper now may be estimated using (7.21b) as

D =

∫ L

0

µ
∂u

∂y
|y=0 dx =

∫ L

0

µU

δ(x)
f ′′(ξ = 0) dx =

√
µ2U3

2ν
f ′′(ξ)

∫ L

0

dx√
x
=
√
2µρU3Lf ′′(0). (7.28)

The value of f ′′(0) from the solution of (7.24-7.25) is 0.4696. Substituting this value yields an expression for
the drag on a flat plate align with a flow at high Reynolds number as

D = 0.664
√
ρµU3L. (7.29)

A comparison of the results of (7.29) with that of the complete solution computed using COMSOL is shown
in Table 7.2. The simple expression in (7.29) agrees well with the results of the full computational solution.
Reasons for the remaining slight disagreement are the finite thickness of the plate in the COMSOL simulation
and the approximations made in the boundary layer theory.

According to (7.29), longer plates experience greater drag but drag does not grow proportional to the plate
length. It is so because the boundary layer is thinner near the leading edge of the plate, where the plat
experiences most drag. The drag is super-linear in the freestream fluid speed, growing as U3/2, which is because
the boundary layer thickness itself decreases with U thereby enhancing the shear stress on the plate. Also, in
the limit of vanishing viscosity, the drag decreases to zero proportional to

√
µ. The physical explanation for

why the drag might vanish with vanishing fluid density is left for the astute student to discover.



Chapter 8

Acoustics and Incompressibility

We have extensively employed the incompressible approximation despite being acutely aware of the fact that
no physical material is exactly incompressible. In this chapter, we examine the justification underlying this
assumption using dimensional analysis. The theory underlying the acoustic limit of Navier-Stokes equations is
needed to support our analysis. Let us derive this theory.

8.1 Acoustic limit of Navier-Stokes equations

m
id
-p
la
n
e

body
force

Room

Figure 8.1: Schematic of the thought experiment to develop the acoustic approximation. A body force is applied
to a thin slice of the fluid near the mid-plane for a short duration of time.

Consider the following thought experiment in a rectangular room filled with air. Imagine a fictitious agency
exerting a body force concentrated on a thin slice around the mid-plane of the room for a short duration. Let
us imagine the slice to be much thinner than the room length and the duration to be short. This setup is
schematically shown in Figure 8.1.

If the fluid were incompressible, the response of the fluid would simply be to be compressed in the right
half of the room and be de-compressed in the left half for the duration of the pulse. However, for a fluid with
properties similar to air, a computational solution obtained using COMSOL illustrates a different outcome. For
this simulation, the ambient pressure was taken to be p0 = 1 Pa and the ambient density to be ρ0 = 1 kg/m3.
The equation of state is

p = p0

(
ρ

ρ0

)γ

, (8.1)

where γ is the adiabatic gas index, which is equal to the ratio of specific heats of the gas under constant pressure
and under constant volume. For air, γ = 1.4 approximately. A body force impulse was applied to a slice of
about 0.5 m around the mid-plane of a 20 m × 20 m room for about 10 ms. Figure 8.2 shows the snapshots
of the fluid pressure that develop in the room every 2 seconds. Clearly, the fluid in the room does not behave
according to our expectations for an incompressible fluid. Two pulses of pressure originate near the mid-plane.
The high-pressure pulse propagates to the right and the low-pressure pulse to the left. When they encounter the
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walls of the room, they get reflected and the reflected pulses meet near the mid-plane. Clearly, this behaviour
is similar to that of a wave, in this case a sound wave.

−10 0 10

x

−10

0

10

y

−2 0 2

Figure 8.2: Snapshots of pressure
perturbation in millibars at 2 s in-
tervals from t = 0 (top) to t = 16 s
(bottom).

An acoustic limit of the Navier-Stokes equations explains the origins
of sound propagation in compressible media and many features of the
observations from the COMSOL simulation, such as the speed of propa-
gation of the pulses.

8.1.1 The Acoustic limit

To derive the acoustic limit of Navier-Stokes equations, we linearly per-
turb the inviscid compressible version of the equations to small amplitude
motion. The inviscid compressible governing equations are

∂ρ

∂t
+∇ · (ρu) = 0, (8.2)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p. (8.3)

To perform the linearization, we note that the static fluid at the ambient
pressure and density satisfies the governing equations (8.1-8.3). This
trivial solution, called the base state or the unperturbed state, is given
by

p = p0, ρ = ρ0, u = 0. (8.4)

We now perturb this state infinitesimally as

p = p0 + ϵp′, ρ = ρ0 + ϵρ′, u = 0+ ϵu′, (8.5)

where we consider the limit of the scalar parameter ϵ → 0 to impose
the infinitesimal size of the perturbation. Substituting these perturbed
quantities in (8.1-8.3) yields

ϵp′ = p0

[(
1 + ϵ

ρ′

ρ0

)γ

− 1

]
, (8.6)

∂ρ0
∂t

+ ϵ
∂ρ′

∂t
+ ϵ∇ · ((ρ0 + ϵρ′)u) = 0, (8.7)

(ρ0 + ϵρ′)

(
ϵ
∂u′

∂t
+ ϵ2u′ ·∇u′

)
= −∇p0.− ϵ∇p′ (8.8)

Note that
∂ρ0
∂t

and ∇p0 vanish. We now expand these equations in a

series in ϵ.

ϵp′ = p0

[
ϵγ
ρ′

ρ0
+ ϵ2

γ(γ − 1)

2

(
ρ′

ρ0

)2

+ . . .

]
, (8.9)

ϵ

(
∂ρ]

∂t
+ ρ0∇ · u

)
+ ϵ2∇ · (ρ′u′) = 0, (8.10)

ϵρ0
∂u

∂t
+ ϵ2

(
ρ′
∂u′

∂t
+ ρ0u

′ ·∇u′
)
+ ϵ2ρ′u′∇u′ = −ϵ∇p′. (8.11)

Note that in the limit ϵ→ 0, each of the terms in these equations vanish,
thus ascertaining the validity of the base state as a valid solution of the
governing equations. To derive the equations governing the perturba-
tions, it is necessary to divide each term by a factor of ϵ, and then take
the limit as ϵ→ 0. This yields

p′ =
γp0
ρ0

ρ′, (8.12)

∂ρ′

∂t
+ ρ0∇ · u′ = 0, (8.13)

ρ0
∂u′

∂t
= −∇p′. (8.14)
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Eliminating ρ′ and u′ to derive a single equation for pressure as

∂2p′

∂t22
= c2∇2p′ where c2 =

γp0
ρ0

. (8.15)

This is the wave equation for the perturbation to the pressure and c is the speed of the wave, in this case the
sound wave. In other words, small perturbations in pressure propagate as sound waves at a speed given by c.

8.2 Incompressible approximation

The incompressibility condition neglects the variations of density of the fluid. We are now in a position to derive
conditions based on dimensional analysis for the assuming the fluid to be incompressible. These conditions are
of two kinds. The first ensures that the pressure variations in the fluid are not so large as to induce appreciable
changes in the density. And the second ensures that the temporal dynamics associated with propagation
of pressure impulses may be considered essentially instantaneous. In what follows, we will take a flow with
characteristic length, time, and speed to be L, T and U , respectively. We will take the ambient density and
pressure to be ρ0 and p0, respectively.

8.2.1 Variations in density due to pressure

In an incompressible flow, the pressure field establishes itself to ascertain that the density of the fluid does not
change due to the flow of material. Therefore, the magnitude of pressure variations is set by the strongest forces
in the flow. For flows with large Reynolds numbers, this force is the fluid inertia, whereas at small Reynolds
numbers, it is the fluid viscosity. Therefore, we need two different cases.

Inertially-dominated flows

When the fluid inertia is the dominant force in the fluid, the variations in pressure generally (but not always1)
scale as ρU2. The scaling estimate for the corresponding change in density is

ρ′ =
ρ0U

2

(
∂p

∂ρ

) . (8.16)

Noting that
∂p

∂ρ
scales with c2, where c is the speed of sound in the medium, we arrive at

ρ′

ρ0
=
U2

c2
= Ma2, where Ma =

U

c
. (8.17)

Here Ma is the Mach number. The flow may be approximated to be incompressible if Ma ≪ 1. For aerospace
applications, when Ma ≲ 0.3, the flow is found to be approximated well by the incompressible assumption. For
other applications, the mileage of this condition may vary.

Viscously-dominated flows

The scale for pressure variations in a viscously-dominated flow is µU/L. The corresponding variations in density
are

ρ′

ρ0
=

µU/L

ρ0

(
∂p

∂ρ

) =
Ma2

Re
. (8.18)

Thus, when Re is small, the condition for violating incompressibility is that Ma2 be much larger than Re. For
practical materials, this condition is difficult to violate.

1For example, the pressure is uniform in Stokes first problem, despite inertia being a dominant force and the scale of fluid
velocity variations being U ̸= 0.
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8.2.2 The finite propagation-speed of sound

The second criteria for incompressibility is that sound propagation be considered instantaneous. Given the
finite speed of propagation of sound, pressure pulses travel a distance cT in time T . If the transient dynamics
on time-scale T are of interest to the analysis (e.g., the flow may be driven on a rapid time scale), and the
system size of interest is much larger than cT , then the propagation of sound waves may not be ignored. This
condition may be stated as

L

cT
≪ 1, (8.19)

for incompressibility to be a valid approximation to the resulting flow.



Chapter 9

Stokes Flow

In this chapter, we will be considering situations where inertial forces are negligible such that the flows have
small Reynolds numbers. Such flows are named Stokes flows after George G. Stokes who first calculated the drag
on a sphere moving through a viscous fluid. The applications of Stokes flows are wide ranging, from biological
applications at the small scale (e.g. the swimming of microorganisms) to geological applications at the large
scale (e.g. the flow of lava).

9.1 Recap: Governing Equations

9.1.1 Navier-Stokes Equations

For an incompressible fluid, the equations for mass and momentum balance are (see §2.8 and §2.9):

∇ · u = 0 and ρ
Du

Dt
= f +∇ · T , (9.1)

where u is the velocity, ρ is the constant density, t is time, T is the stress tensor and f is a body force (i.e.
f = ρg).

Internal viscous stresses are produced by deformation. The fluid is Newtonian if the relationship between
the rate of deformation (γij = ∂ui/∂xj) and the stress T is local, linear, instantaneous and isotropic. If the
fluid is also incompressible, the Newtonian constitutive law is

T = −pI + µ
(
∇u+∇uT

)
. (9.2)

Substituting this into the momentum balance (9.1) gives the incompressible Navier-Stokes equations:

ρ
Du

Dt
= −∇p+ µ∇2u+ f (9.3)

9.1.2 Reynolds number

To non-dimensionalise the problem we write

u = U ũ, x = Lx̃, t =
L

U
t̃, p = P p̃, (9.4)

where U is a characteristic velocity scale, L is a characteristic lengthscale, and P is a characteristic pressure
scale. Substituting these into equation (9.3) when f = 0 and rearranging we arrive at

ρUL

µ

(
∂ũ

∂t̃
+ ũ · ∇̃ũ

)
= −PL

µU
∇̃p̃+ ∇̃2ũ, (9.5)

where ∇̃ ≡ ∂/∂x̃i. We choose the viscous scaling for the pressure P = µU/L (we could have chosen the
alternative inertial scaling P = ρU2). This leaves one non-dimensional group called the Reynolds number:

Re =
ρUL

µ
=
UL

ν
≡ inertia

viscous stresses
, (9.6)
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where ν = µ/ρ is the kinematic viscosity (µ is denoted the dynamic viscosity). In this section we will be focusing
on the limit where Re ≪ 1 such that inertia is negligible and we can ignore the left-hand side of (9.5). The
mass and momentum balance, known as Stokes Equations, are then given by

∇ · u = 0 and 0 = −∇p+ µ∇2u+ f . (9.7)

9.1.3 Energy and Dissipation

Taking the dot product of the full momentum equation (9.1) with the velocity u and integrating over a volume
Ω gives

∫

Ω

ρu · ∂u
∂t

dΩ +

∫

Ω

ρu · (u ·∇u) dΩ =

∫

Ω

u · f dΩ +

∫

Ω

u · (∇ ·T) dΩ. (9.8)

This can also be written in summation convention
∫

Ω

ρui
∂ui
∂t

dΩ +

∫

Ω

ρuiuj
∂ui
∂xj

dΩ =

∫

Ω

uifi dΩ +

∫

Ω

ui
∂Tij
∂xj

dΩ. (9.9)

Rearranging, applying the divergence theorem and mass conservation, the left-hand side becomes

LHS =

∫

Ω

1
2

∂

∂t
(ρuiui)− 1

2uiui
∂ρ

∂t
dΩ +

∫

Ω

1
2

∂

∂xj
(ρuiuiuj)− 1

2uiui
∂

∂xj
(ρuj) dΩ

=
d

dt

∫

Ω

1
2ρuiui dΩ +

∫

∂Ω

1
2ρuiuiujnj dA−

∫

Ω

1
2uiui

(
∂ρ

∂t
+

∂

∂xj
(ρuj)

)

︸ ︷︷ ︸
=0

dΩ.

Similarly, the right-hand side becomes

RHS =

∫

Ω

uifi dΩ +

∫

Ω

∂

∂xj
(uiTij)− Tij

∂ui
∂xj

dΩ

=

∫

Ω

uifi dΩ +

∫

∂Ω

uiTijnj dA−
∫

Ω

Tij
∂ui
∂xj

dΩ.

The mechanical energy equation is then written as

d

dt

∫

Ω

1
2ρu

2 dΩ

︸ ︷︷ ︸
(1)

+

∫

∂Ω

1
2ρu

2u · ndA

︸ ︷︷ ︸
(2)

=

∫

Ω

u · f dΩ
︸ ︷︷ ︸

(3)

+

∫

∂Ω

uiTijnj dA

︸ ︷︷ ︸
(4)

−
∫

Ω

Tij
∂ui
∂xj

dΩ

︸ ︷︷ ︸
(5)

, (9.10)

where

1. the rate of change of kinetic energy in volume Ω is due to:

2. the flux of kinetic energy over the boundary A,

3. the rate of working by body forces f in volume Ω,

4. the rate of working of surface forces in A,

5. and the stress working in volume Ω.

The mechanical energy equation above is for a general continuum. We can now look more specifically for a
Newtonian viscous fluid with constitutive law,

Tij = −pδij + 2µeij where eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (9.11)

The stress working per unit volume then becomes

Tij
∂ui
∂xj

= −pδij
∂ui
∂xj

+ 2µeij
∂ui
∂xj

. (9.12)
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Remembering some properties of the rate of strain and rotation tensors, we know that

δij
∂ui
∂xj

=
∂ui
∂xi

= ∇ · u = 0, eij + rij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
+ 1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
=
∂ui
∂xj

, (9.13)

eijrij =
1
4

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂ui
∂xj

− ∂uj
∂xi

)
= 0. (9.14)

Hence, the stress working, also known as the viscous dissipation Φ, per unit volume is given by

Φ = Tij
∂ui
∂xj

= 2µeijeij . (9.15)

The viscous dissipation Φ describes the rate of loss of mechanical energy due to friction in the volume Ω.

9.1.4 Additional comments

The approximation of Stokes Flow is good if the velocity or length scales U, L are small (e.g. swimming
microorganisms), or the dynamic viscosity µ is large (e.g. in geophysics, flow in porous media, or the flow of
lava or ice). Some examples are:

L U ρ µ ν Re
Sperm in water: 50µm 200µm/s 103 kg/m3 10−3 Pas 106m2/s 10−2

Mantle: 3× 103 km 1 cm/yr 3300 kg/m3 1021 Pas 3× 1017m2/s 3× 10−21

(See E. M. Purcell (1977) Life at Low Reynolds Number, American Journal of Physics).

Figure 9.1: (a) Swimming sperm. (b) Flow of lava.

When approximating the Reynolds number, there are some caveats. Firstly there may be more than one
relevant lengthscale, e.g in Lubrication theory later in the course the vertical lengthscale H is much smaller
than the horizontal lengthscale L. These lengthscales may also vary with position e.g. flow past a body where
in the far field Re ∼ Ur/ν where r is the radial distance away from the body. Finally, the time scale may not
be L/U but instead may be specified by an external driving force e.g. an oscillating boundary condition with
timescale T ∼ ω−1.

9.2 Properties of Stokes Flows

1. Instantaneity Instantaneity of the flow means there are no time derivatives ∂u/∂t, so no inertia. The flow
has no memory and only knows about the current boundary conditions and applied forcing, responding
immediately to any changes. The flow is said to be “quasi-steady” as u can vary in time if the boundary
conditions and applied forcing f(t) varies in time.

E.g. for a translating body with speed U(t), the fluid force on the body is proportional to its velocity
f(t) ∝ U(t) and not to its acceleration dU(t)/dt.

2. Linearity: Linearity means that the flow is linearly forced whether it is by a boundary motion or body
force. In Stokes Equations there is no u ·∇u, so u(x, t) and p are linear in f and the boundary conditions.
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Figure 9.2: A translating body.

3. Reversiblity: Reversible in time: if you apply a force f(t) in 0 ≤ t < T and then reverse the force and
its history f(t) = f(2T − t) in T ≤ t < 2T then the flow reverses and the fluid particles return to their
starting position.

Reversible in space: reversibility in time and the symmetry of geometry can often be used to rule out
some components of velocity u.

E.g. does a sphere sedimenting next to a vertical wall migrate towards the wall?

Figure 9.3: Sedimenting sphere. Reversing the forcing g must reverse the velocity u by reversibility in time.
Because of the symmetry of the sedimenting sphere we can reverse the system in z. In order for (a) to be the
same as (c) we require the sphere to fall vertically with no horizontal component.

4. Forces Balance:

Since there is no inertia the forces in the system must balance:

∇ · T = −f ⇒
∫

Ω

∇ · T dΩ =

∫

Ω

−f dΩ. (9.16)

Applying the divergence theorem then gives
∫

∂Ω

T · n dA+

∫

Ω

f dΩ = 0. (9.17)

This checks the consistency of the stress boundary conditions. In a similar way, we can check the consis-
tency of the velocity boundary conditions by intergrating the mass balance equation:

∇ · u = 0 ⇒
∫

Ω

∇ · udΩ =

∫

∂Ω

u · ndA = 0. (9.18)

5. Work Balances Dissipation: Since there is no kinetic energy in the mechanical energy balance, from
(9.10) we know that the work done by body and surface forces must balance the viscous dissipation in a
given volume:

∫

Ω

ΦdΩ =

∫

Ω

Tij
∂ui
∂xj

dΩ =

∫

Ω

u · f dΩ +

∫

∂Ω

uiTijnj dA. (9.19)

Useful Lemma: Let ui be an incompressible flow and us be a Stokes flow with body force fs such that

∇ · ui = 0 and ∇ · us = 0, ∇ · T s = −fs. (9.20)

Then,

2µ

∫

Ω

esije
i
ij dΩ =

∫

∂Ω

uiiT
s
ijnj dA+

∫

Ω

uiif
s
i dΩ. (9.21)

Proof: We know that for a Stokes flow 2µesij = T s
ij + psδij . Hence,

2µesije
i
ij = T s

ije
i
ij + psδije

i
ij︸ ︷︷ ︸

=0

(9.22)
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due to incompressibility. Also, using the fact that Tij is symmetric and that ∂ui/∂xj = eij + rij where rij is
antisymmetric, we find

2µesije
i
ij = T s

ij

(
∂uii
∂xj

− riij

)
= T s

ij

∂uii
∂xj

− T s
ijr

i
ij︸ ︷︷ ︸

=0

, (9.23)

=
∂

∂xj

(
T s
iju

i
i

)
− uii

∂T s
ij

∂xj
. (9.24)

Integrating over a volume Ω and applying the divergence theorem then gives the result:

2µ

∫

Ω

esije
i
ij dΩ =

∫

Ω

∂

∂xj

(
T s
iju

i
i

)
dΩ−

∫

Ω

uii
∂T s

ij

∂xj
dΩ =

∫

∂Ω

uiiT
s
ijnj dA+

∫

Ω

uiif
s
i dΩ. (9.25)

6. Uniqueness: Uniqueness means that each Stokes flow is unique but can be represented in many ways.
Let u1 and u2 be Stokes flows with the same body forcing and boundary conditions, i.e. f1 = f2 in Ω and
either u1 = u2 or T 1 · n = T 2 · n on ∂Ω. Then u1 = u2.

To show this we consider the flow u∗ = u1 − u2. From the property of linearity we know that u∗ must
also be a Stokes flow with f∗ = 0 and either u∗ = 0 or T ∗ · n = 0 on ∂Ω. From the above lemma, we can
show that

2µ

∫

Ω

e∗ije
∗
ij dΩ = 0. (9.26)

The integrand is positive so must vanish, hence e∗ij = 0. The flow is strain less so must be in solid body

motion U + Ω × x. Velocity boundary conditions of u1 = u2 on ∂Ω imply that u1 = u2 everywhere.
[N.B. Stress conditions can lead to solid body motion].

7. Minimum Dissipation: Among all incompressible flows with the same velocity boundary conditions,
the dissipation is minimised by the Stokes flow with no body force.

Let ui be an incompressible flow and us be a Stokes flow with fs = 0 and ui = us = U. We know that

2µ

∫

Ω

(eiij − esij)(e
i
ij − esij) dΩ ≥ 0 (positive integrand) (9.27)

= 2µ

∫

Ω

(eiije
i
ij − esije

s
ij) dΩ + 4µ

∫

Ω

(esij − eiij)e
s
ij dΩ

︸ ︷︷ ︸
=0

, (9.28)

from the lemma above. Therefore the dissipation is minimised for a Stokes flow

2µ

∫

Ω

eiije
i
ij dΩ ≥ 2µ

∫

Ω

esije
s
ij dΩ. (9.29)

8. Geometric bounding: The minimum dissipation theorem can be used to calculate bounds for the flow
around more complicated geometries. Consider a cube of side length 2L moving at a velocity U in a fluid,
with drag force FC , and Stokes flow us(x) outside the cube. We can write down the dissipation (using

Figure 9.4: Stokes flow around a translating cube

the Stokes flow property that work balances dissipation) as

∫

vol. outside cube

2µesije
s
ij dΩ =

∫

cube

UiTijnj dA = U ·
∫

cube

T · ndA = −U · FC . (9.30)
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We are considering the dissipation in the volume outside of the cube so the normal to the surface points
inwards. This is the opposite to calculating drag on the sphere and hence a minus sign is introduced. Now
consider a sphere that just contains the cube so have side length

√
3L. We can define an incompressible

flow u(x)i outside the cube made up of a Stokes flow outside the sphere and a flow with constant flow
velocity U between the sphere and the cube:

ui(x)=
{
u(x) (Stokes flow past sphere) x outside sphere

U between sphere and cube
(9.31)

The dissipation for this flow is given by
∫

vol. outside cube

2µeiije
i
ij dΩ =

∫

vol. outside sphere

2µeiije
i
ij dΩ = −U · F sphere = 6πµ

√
3LU ·U , (9.32)

where we have used the fact that the strain rate for a flow with constant velocity is zero (∂Ui/∂xj = 0)
and the drag on a sphere of radius a =

√
3L is F = −6πµaU . Finally, we know that the dissipation is

minimised for a Stokes flow, and hence

6πµ
√
3LU ·U ≥ −U · FC . (9.33)

This gives an upper bound on the drag force on the cube. We can go through a similar argument to find a
lower bound by considering the flow outside of a sphere that just fits inside the cube, with radius a = L.
We won’t repeat the analysis here but the result should give

6πµ
√
3LU ·U ≥ −U · FC ≥ 6πµLU ·U . (9.34)

9. Reciprocal theorem: Consider Stokes flows u1(x) and u2(x) in a given volume with different boundary
conditions and no body forces. Taking the first flow to be the Stokes flow us = u1(x), the second flow to
be the incompressible flow ui = u2(x) and using the above lemma we have

2µ

∫

Ω

e1ije
2
ij dΩ =

∫

∂Ω

u2iT
1
ijnj dA. (9.35)

If we instead take the second flow to be the Stokes flow us = u2(x), in a similar manner we have

2µ

∫

Ω

e2ije
1
ij dΩ =

∫

∂Ω

u2iT
1
ijnj dA. (9.36)

Equating the two we find that the rate of working of surface forces of flow 1 against flow 2 equals the rate
of working of surface forces of flow 2 against flow 1 (reciprocal theorem):

∫

∂Ω

u2iT
1
ijnj dA =

∫

∂Ω

u2iT
1
ijnj dA. (9.37)

If the boundary conditions are a uniform translation velocity U1,2, the reciprocal theorem reduces to

U1 · F 2 = U2 · F 1, (9.38)

where F 1,2 are the corresponding surface forces.

9.3 Stokes Flow Solutions

9.3.1 Representation as Harmonic Functions

Consider Stokes equations with body force f = 0:

−∇p+ µ∇2u = 0, ∇ · u = 0. (9.39)

1. ∇ ·
(
−∇p+ µ∇2u

)
= 0 ⇒ ∇2p = 0 (9.40)

2. ∇×
(
−∇p+ µ∇2u

)
= 0 ⇒ ∇2ω = 0 where ω = ∇× u (9.41)

3. ∇2
(
−∇p+ µ∇2u

)
= 0 ⇒ ∇4u = 0. (9.42)

Hence, p and ω are harmonic and u is biharmonic.
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9.3.2 Papkovich-Neuber Solutions

A method for finding the solution of Stokes flows comes from the Papkovich-Neuber representation. Suppose
we can write the pressure p = ∇2Π. Then

∇2(−∇Π+ µu) = 0 ⇒ µu = ∇Π−Φ where ∇2Φ = 0. (9.43)

Using the incompressibility condition, we have

µ∇ · u = ∇ · (∇Π−Φ) = 0 ⇒ ∇2Π = ∇ ·Φ ⇒ Π = 1
2 (x ·Φ+ χ) where ∇2χ = 0. (9.44)

We can check this last relation:

∂2Π

∂xi∂xi
=

∂2

∂xi∂xi

(
1

2
xjΦj +

1

2
χ

)
=

1

2

∂

∂xi

(
∂xj
∂xi

Φj + xj
∂Φj

∂xi

)
+

1

2

∂2χ

∂xi∂xi︸ ︷︷ ︸
=0

(9.45)

=
1

2

∂

∂xi

(
δijΦj + xj

∂Φj

∂xi

)
=

1

2



∂Φi

∂xi
+ δij

∂Φj

∂xi
+ xj

∂2Φj

∂xi∂xi︸ ︷︷ ︸
=0


 =

∂Φi

∂xi
. (9.46)

Any Stokes flow with f = 0 can be written in terms of a harmonic vector Φ and a harmonic scalar χ:

2µu = ∇ (x ·Φ+ χ)− 2Φ and p = ∇ ·Φ. (9.47)

9.3.3 Spherical Harmonic Solutions

Spherical harmonic functions are used for solutions involving points, spheres and cylinders that have no preferred
direction or orientation. Let the radial coordinate r = |x| ≡ (x · x)1/2. We can show that ∇2 1

r = 0, except
when r = 0:

∂2

∂xj∂xj

(
(xixi)

−1/2
)

= − ∂

∂xj

(
(xkxk)

−3/2xiδij

)
= − ∂

∂xj

(
(xkxk)

−3/2xj

)
(9.48)

= −3(xkxk)
−3/2 + 3(xmxm)−5/2xkxjδkj = 0. (9.49)

All other harmonic functions ϕ with ϕ→ 0 and r → ∞ are made up of

1

r
, ∇1

r
, ∇∇1

r
, ∇∇∇1

r
, ... (9.50)

Harmonic functions that are bounded at r = 0 are made up of

r
1

r
, r3∇1

r
, r5∇∇1

r
, ... r2n+1∇n 1

r
, ... (9.51)

These solutions only depend on r and x and have no preferred orientation. Some useful derivatives to remember
are:

1. (∇x)ij =
∂xi
∂xj

= δij (identity) (9.52)

2. (∇r)i =
xi
r

(9.53)

3.

(
∇1

r

)

i

= −xi
r3

(9.54)

4. (∇f(r))i = f ′(r)(∇r)i = f ′(r)
xi
r

(9.55)

Since we know that Stokes flows are linear in boundary conditions and forcing, we can form Papkovich-Neuber
solutions by multiplying them by constant scalars, vectors, tensors, and forming dot-products, for example

A
1

r
, B∇1

r
, C ·∇1

r
, ... (9.56)
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9.3.4 Tensors and Pseudotensors

When building these solutions there are some properties it is useful to recall about tensors. An nth-rank tensor
is a set of objects that transform like a product of n vectors. For example, if Ti1i2...in is an nth-rank tensor,
then

T ′
j1j2...jn = Oj1i1Oj2i2 ...OjninTi1i2...in , (9.57)

where Oij is a transformation matrix. Symmetry properties are tensor invariant, so if Ti1i2...in is symmetric
(antisymmetric) under an exchange of i1 and i2 then T ′

j1j2...jn
is also symmetric (antisymmetric) under an

exchange of j1 and j2. Examples of tensors in our problems would be

velocity u, force F =

∫
T · n dA, position x, grad ∇, identity I. (9.58)

In contrast, pseudotensors, such as the Levi-Civita ϵijk, change sign under transformation by reflections. Ex-
amples of pseudotensors we will come across are

angular velocity Ω, couple G =

∫
x× (T · n) dA, cross product u× x, vorticity ω = ∇× u. (9.59)

If we want to find the velocity u using the Papkovich-Neuber representation, then we want Φ and χ to be
tensors.

9.3.5 Point Force and Source Flow

Point force (Stokeslet): We want to find the velocity field for a point force. Consider the following:

∇ · T = µ∇2u−∇p = −F δ(x) (9.60)

∇ · u = 0, u → 0 as |x| → ∞. (9.61)

We know that

− by linearity, the velocity field must be linear in the forcing F

− solution must decay in the far field

− there is no preferred direction in the problem, can use spherical harmonics

− the velocity field u must be made up of tensors

Using this information, we can now try to build harmonic functions Φ and χ using the solutions in (9.50)-(9.51).
Let’s try the following ansatzes:

Φ =
αF

r
✓ (9.62)

Φ = αF ·∇∇1

r

(
equivalently χ = βF ·∇1

r

)
→ too singular at r = 0 × (9.63)

Φ = αF ×∇1

r
→ pseudotensor × (9.64)

The first ansatz is the only one that decays in the far field and will not blow up at the origin. We proceed by
substituting Φ into the solution (9.47):

2µu = ∇
(
α
F · x
r

)
− 2αF

r
= −α

(
F

r
+

(F · x)x
r3

)
. (9.65)

To fully specify the solution we need to find α. Going back to the problem statement, we want the solution to
satisfy

∇ · u = 0 ⇒
∫

r=R

u · ndA = 0, (9.66)
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(this is built into the Papkovich-Neuber representation), and

−F δ(x) = ∇ · T ⇒ −F =

∫

r=R

T · n dA. (9.67)

On a sphere r = R, x = Rn, the normal velocity can be calculated

u · n|r=R = − α

2µ

(
F

R
+

(F ·Rn)Rn
R3

)
· n = −α(F · n)

µR
(9.68)

⇒
∫

r=R

u · n dA = −αF
µR

·
∫

r=R

ndA

︸ ︷︷ ︸
=0, isotropic

= 0. (9.69)

The normal stress can also be calculated, but requires a bit more algebra:

T · n|r=R = (−pI + µ(∇u+∇uT )) · n|r=R (9.70)

with

p = ∇ ·
(
αF

r

)
= −αF · x

r3
, ∇u = − α

2µ

(
(F · x)I

r3
− 3

(F · x)xx

r5

)
, (9.71)

T · n|r=R =
3α(F · n)n

R2
⇒

∫

r=R

T · n|r=R dA =
3αF

R2
·
∫

r=R

nndA

︸ ︷︷ ︸
A

=
3αF

R2
· 4πR

2I

3
(9.72)

Here, we have noticed that the integral marked A is an isotropic second rank tensor so must be ∝ δij . We can
determine the constant of proportionality by calculating the trace, Aii = 4πR2. Hence, α = −1/4π. Notice
that α is independent of R. If we had chosen one of the other harmonic solutions with higher powers of 1/r,
they would be too singular to satisfy the force condition.

Source Flow (Point mass source): We want to find the velocity field for a point source in three-dimensions.
Consider the following:

∇ · T = µ∇2u−∇p = 0 (9.73)

∇ · u = Qδ(x), u → 0 as |x| → ∞. (9.74)

Strictly speaking this flow is only incompressible for r > 0 as volume is not conserved at r = 0 but generated
there instead.

We know that

− by linearity, the velocity field must be linear in the source flux Q

− solution must decay in the far field

− there is no preferred direction in the problem, can use spherical harmonics

− the velocity field u must be made up of tensors

Let’s try harmonic function

χ =
βQ

r

(
equivalently Φ = β̂Q∇1

r

)
. (9.75)

In a similar manner to the point force, the other harmonic solutions with higher powers of 1/r would be too
singular to satisfy the source condition. Substituting into the solution (9.47) we find:

2µu = ∇
(
βQ

r

)
⇒ u = −βQx

2µr3
. (9.76)

To find β, we use the source condition at r = 0:

∇ · u = Qδ(x) ⇒ Q =

∫

r=R

u · n dA = − βQ

2µR2

∫

r=R

n · ndA = − βQ

2µR2
4πR2. (9.77)

Hence, β = −µ/2π. The velocity field then becomes u = Qx/4πr3 which is independent of viscosity µ. This is
the three-dimensional extension of the potential flow for a point source studied in §6.
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9.3.6 Motion of a rigid particle

A sphere of radius r = a translating with velocity U and rotating with angular velocity Ω moves with velocity

u|r=a = U+Ω× x (9.78)

and exerts a force F and couple G on the fluid. The dissipation in the fluid due to the particle is (using work
balances dissipation)

∫

Ω

ΦdΩ =

∫

∂Ω

u · T · ndA =

∫

particle

(U+Ω× x) · T · ndA (9.79)

= U ·
∫

particle

T · ndA+Ω ·
∫

particle

x× (T · n) dA (9.80)

= U · F+Ω ·G, (9.81)

where the normal points out of the fluid into the body, with

force F =

∫

particle

T · ndA and couple G =

∫

particle

x× (T · n) dA (9.82)

exerted on the fluid by the sphere.

9.3.7 Translating Rigid Sphere

Velocity Field: We would like to calculate the velocity field for a rigid sphere of radius r = a translating with
velocity u = U . Consider the following:

∇ · T = µ∇2u−∇p = 0, ∇ · u = 0, (9.83)

u = U at r = a, u → 0 as |x| → ∞. (9.84)

We know that

− by linearity, the velocity field must be linear in the forcing U

− solution must decay in the far field

− there is no preferred direction in the problem, can use spherical harmonics

− the velocity field u must be made up of tensors

Let’s try

Φ

2µ
=
αU

r
and

χ

2µ
= βU ·∇1

r
. (9.85)

This then gives velocity field

u = ∇
(
αU · x
r

− βU · x
r3

)
− 2αU

r
= α

[
−U

r
− (U · x)x

r3

]
+ β

[
−U

r3
+

3(U · x)x
r5

]
. (9.86)

Applying the boundary condition u = U at r = a gives

1 = −α
a
− β

a3
, 0 = −α

a
+

3β

a3
⇒ α = −3a

4
, β = −a

3

4
, (9.87)

and

u =
3U

4

(
a

r
+

a3

3r3

)
+

3(U · x)x
4

(
a

r3
− a3

r5

)
. (9.88)

The pressure field can also be calculated

p = −3µaU

2
·∇1

r
=

3µa(U · x)
2r3

. (9.89)
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When finding the velocity field for the point force and point source, we were restricted with the possible
harmonic functions to choose from because of the behaviour at r = 0. For the translating sphere this is no
longer the case. You will notice that if we set either α or β to zero we can no longer satisfy the boundary
condition on r = a.

Force and stress on the sphere: We start by calculating the stress T from the velocity and pressure fields,

T = − pI + µ
(
∇u+∇uT

)
(9.90)

= − 3µa(U · x)I
2r3

+ µ

{
3

4

(
− a

r3
− a3

r5

)
(U x+ xU) +

3

2

(−3a

r5
+

5a3

r7

)
(U · x)xx (9.91)

+
3

4

(
a

r3
− a3

r5

)
[2(U · x)I +U x+ xU ]

}
(9.92)

On r = a, x = an, the stress is

T · n|r=a = −3µU

2a
. (9.93)

The stress on the sphere is constant. Calculating the force, or drag, on the sphere is then relatively straightfor-
ward

drag = F =

∫

r=a

−3µU

2a
dA = −6πµaU . (9.94)

Gravitational settling: Now that we have the drag on a sphere translating at a given velocity, we can reverse
the problem and ask what is the settling speed of a sphere falling under gravity. Balancing the forces on a

Figure 9.5: Sketch of settling sphere with forces.

steady fall we have

0︸︷︷︸
(1)

=
4πa3ρg

3︸ ︷︷ ︸
(2)

− 4πa3ρfg

3︸ ︷︷ ︸
(3)

− 6πµaU︸ ︷︷ ︸
(4)

⇒ U =
2∆ρa2g

9µ
. (9.95)

where

1. no inertia (steady fall, no acceleration)

2. weight of the sphere, density ρ

3. buoyancy (weight of displaced fluid, density ρf )

4. Stokes drag

E.g. For a ball bearing with density ρ = 8g/cm3 we can calculate the sedimenting speed for different fluids:

a ρf ∆ρ µ U Re
Water: 1µm 1 g/cm3 7 g/cm3 10−3 Pas 15µm/s 10−4 ≪ 1
Golden syrup: 1mm 1.4 g/cm3 6.6 g/cm3 60 Pas 0.24mm/s 3× 10−5 ≪ 1
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This experiment can be used to calculate the viscosity of different fluids.

Far-field approximation: Far away from the sphere, we can show that the disturbance looks like a point
force. The velocity field when r → ∞ is

u =
3aU

4r
+

3a(U · x)x
4r3

. (9.96)

The force exerted across ‘r = ∞’ must balance the force exerted across r = a so the strength of the point force
F ′ = 6πµaU . Substituting this into the velocity field gives

u =
1

8πµ

(
F ′

r
+

(F ′ · x)x
r3

)
. (9.97)

This disturbance flow only knows the total force exerted and is independent of particle radius a.



Chapter 10

Lubrication Theory

Lubrication theory is used to describe fluid flows in a geometry where the characteristic lengthscale in one
dimension is significantly smaller than the others. Lubrication theory is important for understanding lubrication
of components in machinery such as a fluid bearing, and in biological fluid dynamics such as understanding the
flow of red blood cells in narrow capillaries.

(a) (b)

Figure 10.1: (a) Thrust bearing. (b) Red blood cells flowing in a capillary.

10.1 Lubrication approximation for flow in a thin layer

Let H be a characteristic vertical lengthscale and L be a characteristic horizontal lengthscale in the direction
of fluid flow. In the lubrication approximation we assume the layer is shallow such that

ϵ = H/L≪ 1. (10.1)

Figure 10.2: Sketch of flow in a thin layer.

In addition, let U be the scale of the horizontal velocity u (in the direction of fluid flow). From incompress-
ibility (∇ · u = 0) we know that the vertical velocity v must scale as UH/L. Note, here we are assuming that
the flow is two-dimensional with no dependence on the coordinate z out of the page (w = 0). We will now
non-dimensionalise the Navier-Stokes equations using these scales. As a recap here, refer back to chapter §4 on
Dimensional Analysis.

We now introduce dimensionless variables (denoted by the tilde)

t = T t̃, x = Lx̃, y = Hỹ, u = Uũ, v =
UH

L
ṽ, p = P p̃. (10.2)

91
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For a Newtonian fluid, the equation for mass balance (see §2.8) becomes

∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0, (10.3)

owing to the choice of scalings for the the vertical velocity. The horizontal momentum equation (see §2.9) is

ρU

T

∂ũ

∂t̃
+
ρU2

L

(
ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ

)
= −P

L

∂p̃

∂x̃
+
µU

L2

∂2ũ

∂x̃2
+
µU

H2

∂2ũ

∂ỹ2
. (10.4)

Dividing by µU/H2, the equation becomes

H2

νT

∂ũ

∂t̃
+
UH2

νL

(
ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ

)
= −PH

2

µUL

∂p̃

∂x̃
+
H2

L2

∂2ũ

∂x̃2
+
∂2ũ

∂ỹ2
. (10.5)

From this non-dimensional version of the equation we can see that inertia can be neglected if the modified
Reynolds number based on H and L satisfies

Re
H2

L2
=
UL

ν

H2

L2
≪ 1, (10.6)

with timescale T = L/U . Choosing pressure scale P = µUL/H2, the horizontal momentum equation can finally
be approximated as

0 = −∂p̃
∂x̃

+
∂2ũ

∂ỹ2
. (10.7)

Using these scales for the pressure and time we can repeat the non-dimensionalisation for the vertical momentum
equation:

UH

ν

H3

L3

(
∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ

)
= −∂p̃

∂ỹ
+
H4

L4

∂2ṽ

∂x̃2
+
H2

L2

∂2ṽ

∂ỹ2
. (10.8)

We find that to leading order (setting ϵ = H/L = 0) inertia can be neglected and the pressure is independent
of vertical coordinate ỹ i.e. p̃ = p̃(x̃, t̃). Here, we have ignored any body forces such as gravity. If we were to
include gravity we’d find the scaling of the vertical momentum equation implies that the pressure is hydrostatic
(with P = ρgH and U = gH3/νL). We will come across this in some of the examples we cover later.

10.2 Squeeze flow

10.2.1 Thrust bearing

Let’s first consider the squeeze flow in a thrust bearing. Figure 10.3 shows the geometry and coordinate system
where the bearing remains stationary and the plane underneath the fluid moves with horizontal velocity −U .
The fluid film wedge generates a hydrodynamic pressure that supports an applied load on the bearing with a
small tangential force for good lubrication. We would like to calculate the pressure in the fluid and hence the
forces exerted on the bearing by the fluid. To solve the lubrication problem we: describe the geometry, solve for
(almost) unidirectional flow, apply mass conservation to close the system, and calculate quantities of interest
in this case the forces on the bearing.

Figure 10.3: Thrust bearing geometry

Geometry The fluid film thickness is given by the geometry of the bearing

h(x) = H1 + αx where α =
H2 −H1

L
. (10.9)
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For the thin film approximation we require h ≪ L. This means that the gradient of the bearing is also small,
|h′| = α≪ 1, and flow is predominantly in the x direction.

Unidirectional flow Given that the flow is approximately in the x direction we can write the velocity as
u = (u, 0, 0). The momentum equations are then

0 = −∂p
∂x

+ µ
∂2u

∂y2
and 0 = −∂p

∂y
. (10.10)

The y-momentum balance tells us that the pressure is independent of y. If p is independent of y then ∂p/∂x
must also be independent of y. Hence, we can integrate the x-momentum balance twice:

u =
1

2µ

dp

dx
y2 +Ay +B ⇒ u = − 1

2µ

dp

dx
y(h− y)− U(h− y)

h
, (10.11)

using the boundary conditions u|y=0 = −U and u|y=h = 0 since the underlying plane is moving and the bearing
is stationary (and we have assumed no-slip on both surfaces). The final quantity to determine is the pressure
gradient dp/dx.

Mass conservation In order to calculate the pressure (and pressure gradient) we can use global mass conserva-
tion and boundary conditions on the pressure. By global mass conservation we know that the volume flux (per
unit z-width) must be constant. We also assume that away from the bearing the pressure must be atmospheric,
p = p0 at x = 0, L. In more detail:

Q =

∫ h

0

udy = − h3

12µ

dp

dx
− Uh

2
= const ⇒ dp

dx
= −12µQ

h3
− 6µU

h2
. (10.12)

Integrating the pressure and applying the boundary conditions at x = 0 gives

p = p0 +
6µQ

α

(
1

h2
− 1

H2
1

)
+

6µU

α

(
1

h
− 1

H1

)
. (10.13)

Applying the boundary condition at x = L allows us to determine the constant volume flux Q:

p0 = p0 +
6µQ

α

(
1

H2
2

− 1

H2
1

)
+

6µU

α

(
1

H2
− 1

H1

)
⇒ Q = − UH1H2

H1 +H2
. (10.14)

The volume flux Q and the pressure p could then be substituted back into the expression for the horizontal
velocity u. The pressure gradient generated by the lubrication flow ensures that the mass flow is constant
through the narrow gap. From x = 0 the pressure increases up to a maximum when dp/dx is zero. The pressure
then decreases again to match the atmospheric pressure at x = L.

dp

dx
= 0 ⇒ U = −2Q

h
and h =

2H1H2

H1 +H2
. (10.15)

The pressure field is plotted for different angle bearings in figure 10.4. In a similar manner, we could look at
what the tangential stress on the boundaries is by calculating µ∂u/∂y at y = 0, h.

Figure 10.4: Plot of the non-dimensional pressure for αL
H1

= 0.1, 0.2, ...1 (red to blue). The stars indicate the
maximum pressure in the fluid layer. Inset shows the corresponding non-dimensional geometry of the bearing.
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Figure 10.5: Cylinder geometry

Forces A thrust bearing is supposed to support high applied loads with reduced friction. To see when this is
the case we can calculate the force on the boundaries per unit z-width:

∫ L

0

T · ndx, (10.16)

where

T = −pI + µ
(
∇u+∇uT

)
≃




−p µ∂u
∂y 0

µ∂u
∂y −p 0

0 0 −p


 , (10.17)

where we have kept only the leading order terms [∂u/∂x ∼ ∂v/∂y ∼ ϵ∂u/∂y]. The normal vector is

n =

{
(0,−1, 0) y = 0

(−h′, 1, 0)/(1 + h′2)1/2 y = h.
(10.18)

Remember, a normal vector to a plane specified f = ax + by + cz + d = 0 is given by ∇f . The unit normal
vector is then defined as n = ∇f/|∇f |. For the bearing, the boundary is f = y − h = 0. Hence, the unit
normal is given by

n = ∇(y − h)/|∇(y − h)| =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(y − h)/|∇(y − h)| = (−h′, 1, 0)/(1 + h′2)1/2. (10.19)

The normal force (above atmospheric pressure) is

∫ L

0

ŷ · T · n− p0 dx =

∫ L

0

p− p0 dx = ... =
6µU

α2

[
log

(
H2

H1

)
− 2(H2 −H1)

H1 +H2

]
. (10.20)

Similarly, we can calculate the tangential force:

∫ L

0

x̂ · T · ndx =

∫ L

0

µ
∂u

∂y
dx = ... =

4µU

α

[
log

(
H2

H1

)
− 3(H2 −H1)

2(H1 +H2)

]
. (10.21)

It would be a good exercise to check these! In the thin film limit |h′| = α≪ 1, the normal force is much larger
than the tangential force, and hence this is a low friction bearing.

10.2.2 Cylinder approaching a wall

The second squeeze flow problem we will consider is a cylinder approaching a wall. We will carry out a similar
procedure to the previous problem. Figure 10.5 shows the geometry of the problem. A cylinder of radius a falls
vertically towards a horizontal plane with minimum gap d(t) between the cylinder and the plane, where d≪ a
in the thin film limit. There are non-slip boundary conditions on the cylinder and on the plane.

Geometry The height of the fluid underneath the cylinder in the limit of θ ≪ 1 (x/a = sin θ ≃ θ, cos θ ≃
1− θ2/2) is

h(x) = d+ a(1− cos θ) ≃ d+
aθ2

2
≃ d+

x2

2a
= d

(
1 +

x2

2ad

)
. (10.22)

This expression for the height gives the horizontal lengthscale in the problem L ∼
√
ad. This lengthscale is

much smaller than the radius of the cylinder (
√
ad≪ a) so is consistent with the approximation of θ ≪ 1. This
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lengthscale is also much larger than the minimum gap (
√
ad ≫ d) so the flow is in the thin film limit and can

be approximated as unidirectional.

Unidirectional flow Following the same method as for the thrust bearing, we can write the unidirectional
flow horizontal velocity as

u = − 1

2µ

dp

dx
y(h− y). (10.23)

Mass conservation The total volume flux (per unit z-width) is given by

Q =

∫ h

0

udy = − h3

12µ

dp

dx
(10.24)

Since the vertical velocity of the cylinder is −ḋ we know the volume leaving a region [0, x] per unit time is −ḋx
[where −d/dt(

∫ x

0
h(u, t) du) = −ḋx]. This must be equivalent to the volume flux. Hence, Q = −ḋx and

dp

dx
=

12µḋ

d3
x

(1 + x2

2ad )
3

⇒ p(x) = p0 −
6µḋa

d2(1 + x2

2ad )
2
, (10.25)

using the boundary condition p→ p0 and x→ ∞.

Forces As in the case of the thrust bearing, the normal force per unit-z width (above atmospheric pressure) is

F =

∫ ∞

−∞
p− p0 dx = −6µḋa

d2

√
2ad

∫ ∞

−∞

1

(1 +X2)2
dX = −6µḋa

d2

√
2ad

π

2
= −3

√
2πµḋ

(a
d

)3/2
. (10.26)

If the cylinder is sedimenting under gravity we know that F = −mg = constant. Substituting this in we find

ḋ ∼ d3/2 ⇒ d ∼ t−2. (10.27)

Hence, the cylinder does not reach the wall in finite time.

10.3 Free surface flow

In the previous two problems we have considered the squeeze flow between two surfaces where the boundary
condition on each surface is no-slip (i.e. the velocity parallel, or approximately parallel, to the surface is zero).
In this next section, we will consider free surface flows where we remove one surface so the fluid is ‘free’ to move
and its location needs to be determined as part of the problem. In particular, we will consider the shape of
a drop on a horizontal plane controlled by either capillary or gravitational forces. To understand when these
forces are applicable we will first introduce the idea of surface tension.

10.3.1 Surface Tension

Surface tension is a property of a free surface which appears due to the asymmetry of intermolecular forces
acting in the interfacial region (typically of nanometric width). As one goes to smaller length scales, surface
forces (∼ L2) begin to dominate volume forces (∼ L3). In particular, the surface tension force typically begins
to dominate gravity when the length scale goes below millimetres-cm.

In the general case, for a free surface between a viscous liquid and a second viscous fluid (gas or liquid), if
we assume that the velocity is continuous across the interface, there are 4 boundary conditions required for the
4 unknowns (3 velocities, which are not fixed, and 1 variable representing the free surface shape). These are
provided by kinematic and dynamic boundary conditions.

Kinematic Boundary Condition Consider a free surface given in implicit form as f(x, t) = 0 with f < 0
corresponding to fluid 1 and f > 0 corresponding to fluid 2. The free surface moves with the velocity of the
fluid, so that fluid particles which begin on the free surface remain there. In other words, the surface ‘follows
the fluid’. This means that we have conservation of f along the fluid paths of the surface particles, i.e. the
material derivative of f is zero:

Dtf = (∂t + (u · ∇)) f(x, t) = 0. (10.28)
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Figure 10.6: The tension of a liquid’s surface allows water striders to ‘walk on water’ and causes liquids to rise
up narrow gaps, through capillary action (here there is a liquid-solid surface tension also).

E.g. For a two-dimensional flow, suppose the free surface is defined as y = h(x, t). Then f(x, y, t) =
y−h(x, t). At the free surface we have f = 0 and a unit normal vector n = (−∂xh, 1)/

√
1 + (∂xh)2 which point

out of fluid 1. For f(x, y, t) = y − h(x, t) so that ∇f = (−∂xh, 1) we find that

−∂th+ (u∂x + v∂y)(y − h(x, t)) = 0 so that ∂th+ u∂xh = v. (10.29)

Dynamic Boundary Condition To obtain a dynamic boundary condition, one applies Newton’s II Law
to the surface (an interface) separating the two fluids. Because there is no mass to the surface (ma = 0 and
external body forces are negligible), the forces acting on the surface from either side, i.e. caused by the stresses
from the two fluids, must balance with any forces that occur from inside the interface.

To calculate the forces from inside the interface we will be interested in surface tension. Surface tension acts
like an elastic membrane on the surface of a liquid and forces it to attempt to minimise its area (crudely, this
is because it is energetically favourable for molecules to be in the bulk of the liquid, rather than at its surface).
This force is responsible for a whole host of effects ranging from the suspension of small objects (e.g. water
striders) through to the breakup of liquid jets (e.g. from a tap in a kitchen), which occurs when the liquid can
reduce its surface area by forming a series of spheres (drops) rather than one cylinder (the jet), see figure 10.6.
Problems involving surface tension are known as capillary flows.

The surface tension force γ (taken to be constant here), per unit length of line, is directed tangentially along
the surface which is parameterised by coordinates (s1, s2) with tangent vectors in these directions (t1, t2). Our
control volume will have ‘lower edge’ at (s10, s20) and now has a surface tension force tugging at all four ends
in the tangential direction.

Figure 10.7: Forces acting on a control volume located at the interface. The stress from the two liquids act on
the faces of the volume, which have area δs2, and the surface tension, which acts on acts on a line, tugs on the
four ends of length δs (the height of the control volume is considered negligible). The interface is parameterised
by coordinates (s1, s2) and the control volume’s ‘lower corner’ is at (s10, s20).

Consider a control volume of length and width along the interface equal to δs whose height is negligible
compared to δs, see figure 10.7. This gives a force balance of

δs2 T+ · n+ δs2 T− · (−n) + γδs (t1(s10 + δs, s2)− t1(s10, s2)) + γδs (t2(s1, s20 + δs)− t2(s1, s20)) = 0

at f = 0. Dividing through by δs2 and taking the limit δs→ 0 we find that

(
T+ −T−) · n = [T · n]+− = −γ

(
∂t1
∂s1

+
∂t2
∂s2

)
≡ γκn at f = 0. (10.30)
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where we have defined the curvature of the interface κ using

κn = −
(
∂t1
∂s1

+
∂t2
∂s2

)
or κ = [(I − nn) · ∇] · n ≡ ∇s · n. (10.31)

To arrive at this expression we know that t1 · n = 0 and t2 · n = 0. Differentiating with respect to interface
coordinates (s1, s2) gives

∂t1
∂s1

· n+ t1 ·
∂n

∂s1
= 0 and

∂t2
∂s2

· n+ t2 ·
∂n

∂s2
= 0 (10.32)

⇒ κ = −
(
∂t1
∂s1

+
∂t2
∂s2

)
· n = t1 ·

∂n

∂s1
+ t2 ·

∂n

∂s2
= ∇s · n. (10.33)

This can be simplified further by noting that n · (n · ∇)n = 0. Hence, the curvature can be written as

κ = ∇s · n = ∇ · n. (10.34)

10.3.2 Bond number

We have seen from equation (10.30) that the stresses tangential to the interface are continuous, whereas the
normal stress has a jump caused by the surface tension force γκ. Hence, the pressure generated by surface
tension is of the order γ/L, where L is a characteristic lengthscale in the problem which is approximately the
radius of curvature of our interface. Therefore, capillary forces will be important when this is comparable to
the pressure generated by gravitational forces, i.e. the hydrostatic pressure ρgL which occurs when

Bo =
ρgL2

γ
= 1 i.e. when Lγ =

√
γ/(ρg), (10.35)

where Lγ is known as the capillary length and Bo is the Bond number. For water in air, where γ = 0.07 N/m,
we have Lγ = 3 mm. Therefore, for large scale flows, such as sea waves, surface tension has no effect, but for
small scale flows, such as those encountered in micro and nanofluidics, its importance far outweighs that of
gravity.

10.3.3 Capillary number

In many cases, we are interested in knowing the shape of a liquid drop or bubble whose flow has negligible force
in comparison to the surface tension forces. In the latter case, for low Reynolds number flows, where viscous
forces dominate inertial ones, looking at the dynamic boundary condition we can see that the viscous force has
magnitude µU/L whilst the surface tension force is γ/L. The ratio of these forces gives the capillary number:

Ca =
µU

γ
(10.36)

and when Ca≪ 1 the flow within the drop has a negligible effect on the free surface, so that the shape can be
calculated independently of the flow (a huge simplification).

10.3.4 Capillary drop

Figure 10.8: Two-dimensional capillary drop
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Let’s consider a liquid drop sat on a horizontal surface. For simplicity, let’s consider a two-dimensional drop
pinned at x = ±X where h(±X, t) = 0, see figure 10.8. In the limit of small capillary number Ca≪ 1, we can
neglect the stress in the drop and calculate the shape of the drop from the dynamic boundary condition:

p− − p+ = γ∇ · n at f = 0. (10.37)

This is known as the Young-Laplace equation. We can parametrise the free surface in terms of a height function
y = h(x), so that f = y − h(x, t), see figure 10.8. Then

n =
(−hx, 1)√
(1 + h2x)

and ∇·n =
∂nx
∂x

+
∂ny
∂y

= − hxx
(1 + h2x)

3/2
. (10.38)

From our y-momentum equation we find the pressure in the fluid is hydrostatic p− = p−0 − ρgy. We assume the
ambient fluid has a uniform pressure p+ = p+0 . Substituting these into the dynamic boundary condition (10.37)
gives

−P − ρgh = γ∇ · n at f = 0. (10.39)

where P = p+0 − p−0 is the (constant) pressure drop across the interface. Hence,

−P − ρgh = − γhxx
(1 + h2x)

3/2
at y = h(x, t). (10.40)

This is a second order PDE for h and hence we must specify a boundary condition on h or its derivative at
each end of the free surface. On top of this one either needs to specify the pressure drop P or, more often, the
volume of the liquid which can then be used to find P .

In the lubrication limit hx ≪ 1 for small bond numbers Bo≪ 1, this reduces to

P = γ
d2h

dx2
(10.41)

with solution a parabola

h =
−P
2γ

(
X2 − x2

)
, (10.42)

where we have the used the pinned boundary condition h(±X, t) = 0. We see that for meaningful solutions we
need P < 0 as P represents the pressure in the gas minus the pressure in the liquid (which we expect to be
higher for a drop, due to surface tension). If we calculate the volume of the drop V we can see how the pressure
and volume of the drop are related:

V = 2

∫ X

0

−P
2γ

(
X2 − x2

)
dx =

−2PX3

3γ
⇒ −P =

3γV

2X3
. (10.43)

In this solution we assumed the drop was pinned at points x = ±X. This is known as a pinned contact line.
An alternative boundary condition would be to prescribe the contact angle θ, the angle at which the free surface
meets the horizontal plane, see figure 10.8. This then gives a boundary condition on the gradient hx = ± tan θ
at x = ±X. In this case the position of the contact line would be found as part of the solution.

The prescribed contact angle will depend on the liquid-solid-gas combination in question: if the solid is
‘wettable’ (aka hydrophilic for water) this angle will be small (i.e. close to zero), so the drop spreads out a lot
(e.g. water on glass), whereas if the angle is high (close to 180◦) then the solid is non-wettable (aka hydrophobic)
and the drop beads up (e.g. water on a lotus leaf).

10.3.5 Gravitational spreading

When the lengthscale of the liquid drop becomes large, gravitational forces begin to dominate over capillary
forces (large Bond number) and viscous forces begin to dominate over surface tension (large capillary number).
We can therefore neglect the jump in the normal stress at the free surface but now need to calculate the flow
within the fluid. Let’s consider the shape of an axisymmetric drop on a horizontal surface under the influence
of gravity, or equivalently, let’s consider the axisymmetric, gravitational spreading of a thin film layer on a
horizontal surface, see figure 10.9.
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Figure 10.9: Axisymmetric spreading of a thin film

Geometry Unlike the squeeze flow problems, the geometry is unknown and will be determined as part of the
solution. In addition, we are now in a cylindrical polar coordinate system. We write the surface of the thin-film
as

z = h(r, t), (10.44)

where z is the vertical coordinate, and r in the radial coordinate parallel to the horizontal plane.

Unidirectional flow In the thin film limit |∂h/∂r| ≪ 1 so the flow is predominantly in the r direction. We
can write the velocity as u = (ur, uθ, uz) = (u, 0, 0). The r- and z-momentum equations are then

0 = −∂p
∂r

+ µ
∂2u

∂z2
and 0 = −∂p

∂z
− ρg. (10.45)

[Note, here we have taken the lubrication approximation of the Stokes equations written in cylindrical polar
coordinates. In this case, the two-dimensional version is the same if we replace r → x and z → y.] We have also
now introduced body force f = −ρgẑ. Integrating the z-momentum equation and applying boundary condition
p(h, t) = p0 gives

p = p0 + ρg(h− z). (10.46)

Hence, the pressure in the fluid film is hydrostatic. Substituting this into the r-momentum equation we have

µ
∂2u

∂z2
= ρg

∂h

∂r
. (10.47)

The right-hand side is independent of z so the flow is driven by the slope of the free-surface. The boundary
conditions on the no-slip underlying plane and the free surface are:

u|z=0 = 0 and µ
∂u

∂z

∣∣∣∣
z=h

= 0. (10.48)

The second condition here is the dynamic boundary condition. Because we are considering large capillary
numbers there is no jump in stress at the boundary (and the ambient fluid is assumed to have a negligible
viscosity). Hence, we find the shear stress must be zero at the free surface.

Finally, integrating the momentum equation and applying the boundary conditions gives radial velocity
profile

u = − ρg
2µ

∂h

∂r
z(2h− z). (10.49)

Mass conservation For mass conservation we consider a cylindrical annulus from r → r+ δr, see figure 10.10.
The volume of fluid entering the annulus at radius r per unit time is Q(r), where Q is the radial volume flux.
Similarly, the volume of fluid leaving the annulus at radius r+δr is Q(r+δr). In addition, because the top surface
is able to move volume can also leave the annulus vertically at a rate per unit time of (2πrδr)w = (2πrδr)∂h/∂t.
Here, I have used kinematic boundary condition ∂h/∂t = w, which is valid when ∂h/∂r ≪ 1. Equating these
volumes to ensure volume conservation gives

(2πrδr)
∂h

∂t
+Q(r + δr) = Q(r) ⇒ 2πr

∂h

∂t
+
∂Q

∂r
= 0 as δr → 0. (10.50)

[Note, the 2πr is present because we need to think about the volume flux in to and out of the entire annulus.
If we were in a two-dimensional geometry, we could ignore this factor and then replace r → x.] As before, we
can calculate the volume flux by considering the flux out of a cylinder of radius r:

Q(r) =

∫ 2π

0

∫ h

0

ur dzdθ = 2πr

∫ h

0

udz = −2πg

3ν
h3r

∂h

∂r
, (10.51)
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Figure 10.10: Volume flux in to and out of a cylindrical annulus

where we have used surface element dS = rdzdθ in a surface of constant radius r. Substituting this flux into
the mass conservation equation gives

∂h

∂t
=

g

3ν

1

r

∂

∂r

(
rh3

∂h

∂r

)
. (10.52)

We now need to solve this Partial Differential Equation (PDE) for the free boundary z = h. As an aside, let’s
integrate the PDE in r between 0 and the boundary r = R(t) where h(R, t) = 0 (it’ll be clear why in a moment):

∫ R(t)

0

r
∂h

∂t
dr =

∫ R(t)

0

g

3ν

∂

∂r

(
rh3

∂h

∂r

)
dr, (10.53)

d

dt

∫ R(t)

0

rhdr − Ṙ(t)hr|r=R︸ ︷︷ ︸
=0

=

[
g

3ν
rh3

∂h

∂r

]R(t)

0︸ ︷︷ ︸
=0

. (10.54)

The second term on the left-hand side is zero because the film has zero height at the edge, h(R, t) = 0. The
right-hand side is zero because the flux at the centre and the edge is zero, Q(0) = Q(R) = 0. Therefore, the
volume of the drop is constant:

V =

∫ 2π

0

∫ R(t)

0

∫ h(r,t)

0

r dzdrdθ

∫ 2π

0

∫ R(t)

0

rhdrdθ = 2π

∫ R(t)

0

rhdr = constant, (10.55)

where we have used volume element dV = rdzdrdθ in cylindrical polar coordinates. If instead, we were able to
introduce fluid at the centre of the flow with some non-zero volume flux we would have condition Q → Q0 as
r → 0 and V = Q0t.

Solving for the free boundary

We would like to solve the following PDE (non-linear diffusion equation) subject to the global constraint
that the volume is constant:

∂h

∂t
=

g

3ν

1

r

∂

∂r

(
rh3

∂h

∂r

)
, h(R, t) = 0, and V = 2π

∫ R(t)

0

rhdr. (10.56)

Scaling the equation of motion and global mass conservation using characteristic height, radial and time scales
H,R and T gives

H

T
∼ gH4

νR2
and V ∼ hR2, (10.57)

which can be rearranged to

H ∼
(
νV

gT

)1/4

and R ∼
(
gV 3T

ν

)1/8

. (10.58)

Since there are no more scales in the problem (assuming the initial condition was a sufficiently long ago to be
irrelevant) it suggests we such look for a similarity solution of the form

h(r, t) = (νV/gt)
1/4

H(η) where η ≡ r/
(
gV 3t/ν

)1/8
(10.59)

with the edge of the film at ηN = R/
(
gV 3t/ν

)1/8
. These solutions are self-similar which means that by

appropriately scaling the radius and height of the film by a power of t the time evolution of the current falls
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onto a universal curve (we’ll plot the solution up later to show this more clearly). Let’s substitute this ansatz
into the PDE and constraints. With some algebra with arrive at:

−1

4
H − 1

8
ηH ′ =

1

3η
(ηH3H ′)′, H(ηN ) = 0, and 1 = 2π

∫ ηN

0

ηH dη, (10.60)

where the prime denotes differentiation w.r.t η. The power of this type of solution is that we’ve turned a PDE
into an ODE for H(η) which is significantly easier to solve. We can now make progress with the ODE as follows:

−1

8

(
2ηH + η2H ′) =

1

3

(
ηH3H ′)′ (10.61)

−1

8

(
η2H

)′
=

1

3

(
ηH3H ′)′ (10.62)

−1

8
η2H =

1

3
ηH3H ′ + const.︸ ︷︷ ︸

=0

(10.63)

since we want H(ηN ) = 0. Integrating again we get

1

9
H3 =

1

16
(η2N − η2). (10.64)

Finally, applying our volume constraint we can determine ηN and hence solution

H =

(
9

16
(η2N − η2)

)1/3

where ηN =

(
210

35π3

)1/8

, (10.65)

or equivalently

h =

(
νV

gt

)1/4(
9η2N
16

(
1− r2

R2

))1/3

, R(t) = ηN

(
gV 3t

ν

)1/8

. (10.66)

Figure 10.11 plots the solution to demonstrate the self-similar behaviour.

Figure 10.11: Height versus radius in similarity variables H and η and rescaled variables h and r for 1 ≤ t ≤ 10
(increasing time from blue to red).

Shape of the nose

To investigate the shape of the nose we let h = A(R − r)α. Substituting into the governing equation when
r ≃ R gives

Aα(R− r)α−1Ṙ =
g

3ν

1

R

∂

∂r

(
RA3(R− r)3αAα(−)(R− r)α−1

)
(10.67)

=
g

3ν
A4α(4α− 1)(R− r)4α−2. (10.68)

Matching the powers of R − r gives α = 1/3. The shape of the nose is then h = A(R − r)1/3. The gradient
∂h/∂r is therefore singular at the nose, but not too singular that the flux boundary condition Q(r → R) → 0
is still satisfied.
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10.3.6 Gravitational spreading down an inclined plane

Let’s now consider the shape of a two-dimensional drop spreading down an inclined plane of slope θ. x is
the downslope coordinate and y is the vertical coordinate perpendicular to the slope. The body force is then
f = ρg(sin θ,− cos θ). The fluid is released from a fixed point such that h(0, t) = 0 and the ambient has constant
pressure p0.

The Lubrication approximation is then

0 = −∂p
∂x

+ µ
∂2u

∂y2
+ ρg sin θ, 0 = −∂p

∂y
− ρg cos θ. (10.69)

Integrating the y-momentum equation gives hydrostatic pressure p = p0 + ρg cos θ(h − y). Calculating the
velocity field, integrating across the depth to get the volume flux, and applying mass conservation, we arrive at
evolution equation

∂h

∂t
+
g sin θ

3ν

∂h3

∂x
=
g cos θ

3ν

∂

∂x

(
h3
∂h

∂x

)
. (10.70)

A similarity solution does not exist for the full governing equation. Instead we will consider one particular limit.

Problem: Let’s consider a constant volume release A (per cross-slope distance) of viscous fluid at x = 0 such
that h(0, t) = 0. After a long time the nose (or front) of the current has travelled a distanceXN (t) ≫ (A cot θ)1/2.
We want to find a similarity solution for h(x, t). The volume constraint can be written as

A =

∫ XN

0

hdx ⇒ A ∼ HX, H ∼ A

X
. (10.71)

Scaling the evolution equation to look for the dominant terms gives

H

T
:
g sin θ

3ν

H3

X
:
g cos θ

3ν

H4

X2
(10.72)

1

T
:
g sin θ

3ν

A2

X3
:
g cos θ

3ν

A3

X5
(10.73)

3ν

g sin θ

X5

A2T
: X2 : A cot θ (10.74)

Looking at the relative size of the terms, for XN (t) ≫ (A cot θ)1/2, we can neglect the RHS of the evolution
equation. The system we want to solve is then

∂h

∂t
+
g sin θ

3ν

∂h3

∂x
= 0, A =

∫ XN

0

hdx, h(0, t) = 0. (10.75)

Scaling the remainder of the equations suggest the following scales for the vertical and horizontal coordinates

H ∼
(

νA

g sin θT

)1/3

and X ∼
(
g sin θA2T

ν

)1/3

. (10.76)

Given these scales we will look for a similarity solution of the form

h =

(
νA

g sin θt

)1/3

H(η), η =
x

(
g sin θA2t

ν

)1/3 . (10.77)

The governing equations then become

−1

3
H − 1

3
ηH ′ +

1

3
(H3)′ = 0, 1 =

∫ ηN

0

H dη, H(0) = 0. (10.78)

Integrating gives H = η1/2 we can then determine the nose position

1 =

∫ ηN

0

η1/2 dη =
2

3
η
3/2
N ⇒ ηN =

(
3

2

)2/3

. (10.79)
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The similarity solution is then

h =

(
νA

g sin θt

)1/3


 x
(

g sin θA2t
ν

)1/3




1/2

=

(
ν

g sin θ

)1/2
x1/2

t1/2
, XN (t) =

(
3

2

)2/3(
g sin θA2t

ν

)1/3

. (10.80)

We can see from the similarity solution that the thickness is finite at the front h(XN , t) = hN ̸= 0. This is
because we have neglected a term in the evolution equation which becomes important when you are near the
front. To find the shape of the front (how this jump in the thickness is rounded off) we can substitute in
h = B(XN − x)β into the evolution equation. This gives two possible values for β = 1, 1/3 (assuming the
neglected term is one of the scales). We know we need to match onto the finite thickness height so must have a
cube-root singularity at the nose. This just says that at the nose, the first term on the LHS and the term on the
RHS dominate. Alternatively, we could pose ansatz h = hNf(XN − x) where f has some unknown functional
form to be determined and hN is the thickness at the front and solve for f using the full equation.
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Chapter 11

Complex Fluids and Non-Newtonian
Rheology

11.1 Constitutive laws

Up until now, we have considered Newtonian fluids with a linear relationship between the stress and rate of
deformation in the fluid. For fluids consisting of small molecules, like water, this approximation works very
well, even in turbulent flows with high flow rates. In realistic Newtonian flows, the separation of length and
time scales mean the typical intermolecular distances or velocity distributions of individual constituents are the
same whether the flow is turbulent or at rest. Hence, the energy dissipation in the fluid, which is represented
by viscosity in the Newtonian constitutive law, is not affected by the flow.

When the applied flows are capable of altering the local microstructure of the fluid the classical Newtonian
approximation might fail to provide an adequate mathematical model of the dynamics. For example, this is
the case in solutions of colloidal particles, long flexible polymers, wormlike micelles, and similar complex fluids.
These particles are significantly larger than individual molecules of typical Newtonian fluids, and the time scales
of stress relaxation in these complex fluids are significantly longer than in their Newtonian counterparts. One
can use the longest relaxation time λ to form a dimensionless group

Wi = λγ̇, γ̇ =
√

1
2Σjkγ̇2jk, (11.1)

the Weissenberg number. Here the shear rate γ̇ is an invariant measure of the rate of strain in the fluid (we will
talk about this more in detail below).

For small velocity gradients, Wi ≪ 1, complex fluids obey the linear constitutive law, and flow like Newtonian
fluids at the same Reynolds number. When the Weissenberg number is comparable to or larger than unity,
complex fluids exhibit non-Newtonian behaviour and obey complicated constitutive models, often involving non-
linear dependence of the local stress on the velocity gradient and the deformation history of the fluid. In this
chapter we will first consider the simplest extension of a Newtonian description in which the flow only influences
the instantaneous viscosity of the fluid. We will then discuss a general theory dealing with history-dependent
properties of viscoelastic fluids.

11.1.1 Newtonian fluid

To begin with, let’s recap what we know for Newtonian fluids. The fluid is Newtonian if the relationship between
the rate of deformation (γij = ∂ui/∂xj +∂uj/∂xi) and the stress T is local, linear, instantaneous and isotropic.
If the fluid is also incompressible, the Newtonian constitutive law is

T = −pI + µ
(
∇u+∇uT

)
≡ −pI + µγ̇︸︷︷︸

τ

, (11.2)

where µ is constant and τ is the deviatoric stress tensor and represents the traceless (∇ · u = 0) part of the
stress tensor, while the pressure is the isotropic part.
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Figure 11.1: 1D constitutive laws for Newtonian, power-law and yield stress fluids with typical examples.

11.1.2 Generalised Newtonian fluid

A generalised Newtonian fluid assumes that the applied flow only changes the energy dissipation in the fluid,
represented by the viscosity, but does not change the tensorial structure of the Newtonian model. The generalised
constitutive law is given by

T = −pI + µ(γ̇)γ̇, (11.3)

where µ(γ̇) is the viscosity now dependent on the fluid flow. To ensure that the viscosity does not change under
a coordinate transformation, which would be unphysical, the viscosity can only depend on invariants of the
strain-rate tensor γ̇. The second tensorial invariant is the lowest non-trivial invariant, so we may write

T = −pI + µ(γ̇)γ̇, γ̇ =
√

1
2Σjkγ̇2jk. (11.4)

Power-law fluid
For a power-law fluid the viscosity is given by

µ(γ̇) = µ̂|γ̇|n−1. (11.5)

When n = 1 this reduces to a Newtonian fluid. When n < 1 the fluid is shear-thinning and the effective
viscosity decreases with the rate of deformation; when n > 1 the fluid is shear-thickening and the effective
viscosity increases with the rate of deformation. Figure 11.1 gives some examples of these fluids. Note, the
units of µ̂ are PTn (P -pressure, T -time). The constitutive law for a power-law fluid is then written as

τ = µ̂|γ̇|n−1γ̇. (11.6)

Yield stress fluid
Yield stress fluids incorporate both solid-like and fluid like behaviour. They are characterised in terms of a
yield stress τY . When the stress is below this yield stress there is no deformation, γ̇ = 0. When the stress is
above this yield stress the fluid flows with some viscosity dependent on the strain-rate invariant.

For example, a Bingham fluid has constitutive law

τ =

(
τY
γ̇

+ µ

)
γ̇, τ =

√
1
2Σjkτ2jk > τY , (11.7)

and γ̇ = 0 otherwise, where µ is a constant viscosity. Note, τ is the second invariant of the deviatoric stress
tensor τ . This is chosen to decide whether the fluid is yielded or not as it does not change under a coordinate
transformation and the first invariant is zero.

A Herschel-Bulkley fluid has constitutive law

τ =

(
τY
γ̇

+K|γ̇|n−1

)
γ̇, τ =

√
1
2Σjkτ2jk > τY , (11.8)

and γ̇ = 0 otherwise, where K is the consistency with units PTn and n is the power-law index.
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Figure 11.2: Sketch of Poiseuille flow through a two-dimensional pipe.

11.2 Poiseuille flow

As a simple example, we will consider Poiseuille flow through a two-dimensional pipe. Figure 11.2 shows the
set up of a pipe with pressure gradient Px driving the flow at one end x = 0. x is the along pipe coordinate; y
in the across pipe coordinate with −h ≤ y ≤ h. The velocity u = (u, v) then satisfies the following conservation
of momentum and mass equations:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
=
∂Txx
∂x

+
∂Txy
∂y

(11.9)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=
∂Txy
∂x

+
∂Tyy
∂y

(11.10)

∂u

∂x
+
∂v

∂y
=0. (11.11)

We look for steady solutions where the flow is all in the x-direction and only varies in y such that u = (U(y), 0).
Mass conservation is automatically satisfied and the momentum equations reduce to

0 =
∂Txx
∂x

+
∂Txy
∂y

(11.12)

0 =
∂Txy
∂x

+
∂Tyy
∂y

. (11.13)

The only non-zero component of the strain-rate tensor is γ̇xy = dU/dy, and hence γ̇ = |dU/dy|. The stress
components are therefore

Txx = Tyy = −p, Txy = τxy ⇒ 0 = −∂p
∂x

+
∂τxy
∂y

and 0 = −∂p
∂y
. (11.14)

Hence, p is only a function x. Since τxy is only a function of y, p must also be linear in x:

p = p0 − Pxx ⇒ −Px =
dτxy
dy

. (11.15)

We have yet to consider the rheology of the fluid which we will need to do to solve for the flow field.

Newtonian fluid
For a Newtonian fluid,

τxy = µγ̇xy = µ
dU

dy
. (11.16)

Substituting this into (11.15) gives a second order ODE for U subject to two boundary conditions: no-slip on
the walls U(±h) = 0. Solving for the velocity we find

U(y) =
Px

2µ
(h2 − y2). (11.17)

Power-law fluid
For a power-law fluid, we have

τxy = µ̂

∣∣∣∣
dU

dy

∣∣∣∣
n−1

dU

dy
. (11.18)
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Figure 11.3: Velocity profile for Power-law and Bingham constitutive laws.

Substituting this into (11.15) again gives a second order ODE for U subject to two boundary conditions: no-slip
on the walls U(±h) = 0. We have

µ̂

∣∣∣∣
dU

dy

∣∣∣∣
n−1

dU

dy
= −Pxy +A. (11.19)

By symmetry, we know A = 0. Upon integrating we find velocity

U(y) =
n

n+ 1

(
Px

µ̂

)1/n [
h(n+1)/n − |y|(n+1)/n

]
. (11.20)

Note, you need to be careful of signs here, in particular it’s useful to know that sgn(dU/dy) = −sgn(y).

Bingham fluid
For a Bingham fluid, we have

τxy =

(
τY
γ̇

+K

)
γ̇xy = τY sgn

(
dU

dy

)
+K

dU

dy
= −Pxy for τ = |τxy| > τY (11.21)

The yield condition is equivalent to |y| > τY /Px. Hence, we need to solve for U in three different regions:

1. τY /Px < y < h where dU/dy < 0. This then gives

−τY +K
dU

dy
= −Pxy ⇒ U(y) =

Px

2K
(h2 − y2)− τY

K
(h− y). (11.22)

2. −h < y < −τY /Px where dU/dy > 0. This then gives

τY +K
dU

dy
= −Pxy ⇒ U(y) =

Px

2K
(h2 − y2)− τY

K
(h+ y). (11.23)

3. −τY /Px < y < τY /Px where dU/dy = 0. By matching onto the velocities either side of the unyielded
region (|τxy| < τY ) we find plug velocity

U(y) = Up =
Pxh

2

2K

[
1− τY

Pxh

]2
(11.24)

which is constant. Figure 11.3 plots the velocity profiles for Power-law and Bingham fluids. The central region
is unyielded and flows in a solid plug. When τY /Pxh = 1 the whole flow is unyielded and the plug velocity is
zero i.e. the pressure gradient is not sufficient to get the flow to yield. Yield surfaces divide the unyielded and
yielded parts of the flow. In this case the yield surfaces are given by |y| = Y ≡ τY /Px.

11.3 Taylor-Couette flow

A second example is a Taylor-Couette device where we have fluid between two concentric cylinders. The inner
cylinder at r = a is fixed and the outer cylinder at r = b rotates at a constant rotation rate Ω, see figure 11.4.
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Figure 11.4: Sketch of Taylor-Couette flow between two concentric cylinders.

For an axisymmetric steady flow, the velocity has the form u = (0, uθ(r), 0). The only non-zero strain-rate
component is γ̇rθ, and hence Trθ = τrθ is the only non-zero deviatoric stress component. In cylindrical polar
coordinates, the strain rate tensor and conservation of momentum in the azimuthal direction are given by

γ̇rθ =
duθ
dr

− uθ
r

= r
d

dr

(uθ
r

)
,

d

dr
(τrθ) +

2

r
τrθ =

1

r2
d

dr

(
r2τrθ

)
= 0. (11.25)

N.B. Mass conservation is automatically satisfied by the form of the assumed velocity field. This can be
integrated to give stress

τrθ =
A

r2
, (11.26)

for some constant A.

Bingham fluid
For a Bingham fluid, the constitutive law is

τrθ =
(

τY
|γ̇rθ| + µ

)
γ̇rθ = τY + µγ̇rθ, τrθ > τY

γ̇rθ = 0, τrθ < τY ,
(11.27)

where γ̇rθ > 0 because the inner cylinder is held fixed and the outer cylinder is rotating with rotation rate
Ω > 0. Substituting this into (11.26), in the yielded region, a < r < rY , we have

A

r2
− τY = µγ̇rθ = µr

d

dr

(uθ
r

)
,

A

r2Y
− τY = 0 (11.28)

and in the unyielded region rY < r < b we have

γ̇rθ = 0 ⇒ uθ
r

= Ω. (11.29)

Upon integrating and applying boundary condition uθ(a) = 0 we find

uθ
r

=

{
τY r2Y
2µ

(
1
a2 − 1

r2

)
− τY

µ ln
(
r
a

)
a < r < rY

Ω rY < r < b,
(11.30)

where matching at yield surface gives relationship between the rotation rate and rY

Ω =
τY r

2
Y

2µ

(
1

a2
− 1

r2Y

)
− τY

µ
ln
(rY
a

)
. (11.31)

Here, we have assumed that we can rotate the outer cylinder with some fixed rotation rate Ω and cause it
to yield irrespective of how large the yield stress of the Bingham fluid is. In reality, we will apply some torque
G = Gẑ to the outer cylinder and the rotation rate will depend on the magnitude of the torque, the rheology
of the fluid, and the size of the cylinder. The torque on the outer cylinder is defined as

G =

∫
r × (T · n̂) dA =

∫
r × (T · n̂) bdθdz, (11.32)
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where we have used surface element dA = rdθdz. We know that on the outer cylinder r = (b, 0, 0) = br̂,

T · n̂ = (0, τrθ|b, 0) = τrθ|bθ̂ and r̂ × θ̂ = ẑ. Hence,

G = ẑ

∫ L

0

∫ 2π

0

τrθ|bb2 dθdz = 2πLb2τrθ|bẑ ⇒ τrθ|b =
G

2πLb2
. (11.33)

Comparing this with the stress τrθ = τY r
2
Y /r

2 calculated above, we find a relationship between the yield surface
and the magnitude of the torque G

τrθ|b = τY r
2
Y /b

2 =
G

2πLb2
⇒ rY =

√
G

2πLτY
. (11.34)

If a <
√
G/2πLτY < b, then we have the velocity structure as calculated above with a yield surface within the

domain. If
√
G/2πLτY < a then the fluid is unyielded everywhere and performs solid body rotation. (N.B. if

solid body rotation does occur everywhere then the rotation rate at the inner cylinder is also Ω > 0, which does
not satisfy the fixed boundary condition there. Instead there must be a yielded boundary layer near the inner
wall). If

√
G/2πLτY > b, the fluid is yielded everywhere.

11.4 Viscoelastic fluids

When experiments are done with polymeric fluids it is observed that the response to the shear rate is not always
reproducible even if the same stress is reached. In this case, it takes time for the fluid to adjust to the flow
with fluid having some memory of its flow history. A polymeric fluid will not remember its history forever, but
because the molecules can be stretched by the flow it has some memory until the molecules relax. These fluids
incorporate the behaviours of viscous fluids (which are instantaneous and have no memory) and elastic solids
(which remember everything). Their combination gives a viscoelastic liquid that has a memory that decays with
time.

11.4.1 Maxwell fluid

Let’s first look at a simple model of a viscoelastic fluid called a Maxwell fluid. Consider a shear deformation
where adjacent layers of the material are shifted in the same direction along the planes relative to each other.
The deformation can be described by the strain γ, which is approximately the total relative shift divided by
the distance between the two layers assuming the displacement is small.

The shear stress τ for an elastic solid is given by Hooke’s law

τe = Gγe, (11.35)

where G is the shear modulus of the material. For a Newtonian fluid the constitutive law is

τv = µpγ̇v, (11.36)

where µp is the constant Newtonian viscosity. Graphically we could depict these two elements as a spring and
a dampner. Depending on how we connect them, we form a viscoelastic fluid or viscoelastic solid.

Combined in series To combine these two relations to describe the total stress in terms of the total deformation
we consider the elastic and viscous elements working in series such that the deformation is distributed (γ =
γe + γv) but the stress is the same (τ = τe = τv). Initially, the displacement is taken up by the spring and the
dampner, but the displacement of the spring can be redistributed onto the dampner, resulting in the absence
of stress at long times. Rearranging these equations we obtain

τ +
µ

G
τ̇ = µγ̇. (11.37)

This is the constitutive law for a Maxwell fluid, which is a viscoelastic fluid.

Combined in parallel Combining these two relations in parallel, the stress is now distributed (τ = τe + τv)
but the deformation is the same (γ = γe = γv). In this parallel connection, unlike the previous case, the system
remains under stress so long as γ ̸= 0. Rearranging these equations we obtain

τ = Gγ + µγ̇. (11.38)
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This is the constitutive law for a Kelvin-Voigt solid, which is a viscoelastic solid. In this course, we will be
focusing on viscoelastic fluids so we will return to the Maxwell model.

The 1D Maxwell model τ + λτ̇ = µγ̇, where λ = µ/G, can be solved to give

d

dt

(
et/λτ

)
=
µγ̇

λ
et/λ ⇒ τ(t) =

µ

λ

∫ t

−∞
γ̇(t′)e−(t−t′)/λ dt′. (11.39)

The parameter λ is the Maxwell relaxation time. Looking at the expression for the stress response, we see that
the stress created by a stepwise deformation relaxes exponentially on a time scale λ (viscous-fluid-like property).
Whereas, on short times τ(t) ∼ µγ(t)/λ and the material behaves like a solid. For example, consider the stress
response to a periodic deformation with frequency ω, where γ = γ0 sin(ωt), γ̇ = γ0ω cos(ωt). Substituting into
the integral expression gives

τ(t) =
µγ0ω

λ

∫ t

−∞
cos(ωt′)e−(t−t′)/λ dt′ = µγ0ω

cos(ωt) + λω sin(ωt)

1 + (λω)2
(11.40)

=
µγ̇

1 + (λω)2
+
G(λω)2γ

1 + (λω)2
= µ̃(ω)γ̇ + G̃(ω)γ, (11.41)

where µ̃(ω), G̃(ω) are the frequency dependent viscosity and shear modulus. At short times (λω ≫ 1), G̃ ≃ G
and the material behaves like a solid. Whereas, at long times (λω ≪ 1), µ̃ ≃ µ and the material behaves as a
viscous fluid. The crossover between these two behaves occurs when the time scale of deformation is the same
as the time scale of relaxation, ω−1 ∼ λ.

Frame invariant? In three dimensional coordinates, the Maxwell fluid constitutive law can be written as

τ +
µ

G
τ̇ = µγ̇. (11.42)

As we saw with the generalised Newtonian fluids above, we require the constitutive law to be frame invariant.
However, the time derivative of the stress τ is not frame invariant. For example, if we move from a stationary
lab frame to one moving with constant velocity u0, we have

∂τij
∂t

(x+ u0t) =
∂τij
∂t

+ u0 ·∇τij . (11.43)

But clearly, adding a constant velocity to the fluid should not result in any additional velocity gradients or
additional stresses. Hence, the Maxwell fluid is not frame invariant. This is because the time derivatives of
individual components of the stress tensor do not form a tensor themselves. To deal with this, the ordinary
time derivative needs to be replaced by another derivative.

11.4.2 Oldroyd B fluid

One version of a frame invariant derivative is the upper convected derivative defined as

▽
τ p =

∂τp
∂t

+ u ·∇τp − (∇u)T · τp − τp · (∇u), (11.44)

which transforms as a covariant tensor. N.B. there are other choices for a frame invariant derivative but we will
only consider the upper convected derivative during this course. Rewriting the relationship between stress and
strain-rate (11.42) using the upper convected derivative gives

τp +
µp

G

▽
τ p = µpγ̇ (11.45)

to describe the polymeric stress which incorporates both viscous and elastic properties. The relaxation time of
the fluid is defined as λ = µp/G. For a polymeric fluid, there is an additional Newtonian contribution from the
solvent viscosity µs. Hence, the total deviatoric stress tensor is written as

τ = µsγ̇ + τp. (11.46)

This model is known as the Oldroyd B model. In the limit of vanishing deformation rates it describes a Newtonian
fluid with viscosity µ = µs + µp.
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Oldroyd B Model:

∇ · u = 0 (11.47)

ρ

(
∂u

∂t
+ u ·∇u

)
= ∇ · T (11.48)

T = −pI + τ = −p∗I + µsγ̇ +GA (11.49)

▽
A =

∂A

∂t
+ u ·∇A− (∇u)T ·A−A · (∇u) = − 1

λ
(A− I) (11.50)

where

p∗ = p+
µp

λ
, G =

µp

λ
and A =

1

G
[τ − µsγ̇ +GI] . (11.51)

Here, we have rewritten the Oldroyd B model in terms of variable A; a symmetric second rank tensor. This
form of the model shows that A tends towards its relaxed state A = I at long times governed by long timescale
λ at which point the polymer stress τp vanishes. To understand the properties of Oldroyd B fluids let’s see how
it behaves in some simple fluid flows.

11.4.3 Shear flow

First consider a shear flow of the form

u = (γ̇y, 0, 0), (11.52)

which only depends on t (γ̇ = γ̇(t)) and y so all variables must also only be functions of t and y. By construction
this satisfies mass conservation. The momentum equation reduces to

ρ
∂u

∂t
= ∇ · T , (11.53)

where

T =

(
−p∗ 0
0 −p∗

)
+

(
0 µsγ̇
µsγ̇ 0

)
+G

(
Axx Axy

Axy Ayy

)
, (11.54)

and

∂

∂t
A−

(
γ̇Axy γ̇Ayy

0 0

)
−
(
γ̇Axy 0
γ̇Ayy 0

)
= − 1

λ

(
Axx − 1 Axy

Axy Ayy − 1

)
(11.55)

Steady flow
If the strain rate γ̇ is constant, the components of A must also be independent of t. The components then
satisfy

−2γ̇Axy = − 1

λ
(Axx − 1) (11.56)

−γ̇Ayy = − 1

λ
Axy (11.57)

0 = − 1

λ
(Ayy − 1) (11.58)

−γ̇Ayy = − 1

λ
Axy. (11.59)

Hence the total stress is

T =

(
−p∗ +G(1 + 2λ2γ̇2) (µs +Gλ)γ̇

(µs +Gλ)γ̇ −p∗ +G

)
, (11.60)

=

(
−p+ 2Gλ2γ̇2 µγ̇

µγ̇ −p

)
(11.61)

Compared with the Newtonian equivalent, adding polymers to the solvent causes the viscosity to increase from
µs to µ = µs + µp, and there is now a normal stress difference

Txx − Tyy = 2Gλ2γ̇2. (11.62)
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Figure 11.5: Rod climbing experiment. A rod rotates at the centre of a viscoelastic fluid. The normal stresses
cause the fluid along streamlines to move inwards, and hence, by mass conservation, are forced to climb the
rob. (Adapted from Morozov and Spagnolie, Introduction to Complex fluids.)

This acts in the opposite direction to pressure so is like a tension for stretched polymers along streamlines. This
explains the famous rod-climbing experiments, see figure 11.5. A rod in the middle of an Oldroyd B fluid is
rotated generating a shear flow in the azimuthal direction. The normal stress difference acts as a tension on the
circular streamlines causing them to contract. By mass conservation, the fluid must instead move vertically,
hence causing the fluid to climb up the rod.

11.4.4 Extensional flow

Now let’s consider a two dimensional extensional flow of the form

u = (ε̇x,−ε̇y), (11.63)

where ε̇ is constant. Again, this automatically satisfies mass conservation. The strain-rate and stress tensors
are

γ̇ =

(
2ε̇ 0
0 −2ε̇

)
= 2∇u = 2(∇u)T , (11.64)

T =

(
−p∗ 0
0 −p∗

)
+

(
2µsε̇ 0
0 −2µsε̇

)
+G

(
Axx Axy

Axy Ayy

)
. (11.65)

with the components Aij satisfying

−ε̇
(
Axx Axy

−Axy −Ayy

)
− ε̇

(
Axx −Axy

Axy −Ayy

)
= − 1

λ

(
Axx − 1 Axy

Axy Ayy − 1

)
. (11.66)

Rearranging, we find

Axx =
1

1− 2λε̇
, Axy = 0, Ayy =

1

1 + 2λε̇
. (11.67)

The total stress is then

T =

(−p∗ + G
1−4λ2ε̇2 + 2µextε̇ 0

0 −p∗ + G
1−4λ2ε̇2 − 2µextε̇

)
, (11.68)

where

µext = µs +
λG

1− 4λ2ε̇2
= µs +

µp

1− 4λ2ε̇2
(11.69)

If we plot this viscosity as a function of the strain rate ε̇ (figure 11.6) we see that initially the viscosity increases
(hence thickens, or strain hardens). But when ε̇ = 1/2λ the viscosity diverges and then is negative for larger
values. This result is clearly unphysical. This happens because the Oldroyd B model is derived using Hooke’s
law which is infinitely extensible. To get around this a modification, a nonlinear spring law must be used.
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Figure 11.6: Plot of extensional viscosity for an Oldroyd B fluid against strain rate ε̇. At ε̇ = 1/2λ the viscosity
diverges and is negative for larger values.

11.4.5 Weakly non-linear viscoelastic fluids

A weakly non-linear flow is a situation wherein the flow changes on time scales much longer than the relaxation
time, λ , and therefore λ is in some sense small and can be used as an expansion parameter. It is generally a
bad practice to perform a Taylor expansion in a dimensional variable; a better expansion parameter might be
λ/T0, where T0 is the typical time scale set by the flow.

From the Oldroyd B model we have

τ + λ
▽
τ = µ

(
γ̇ + λ

µs

µ

▽
γ̇

)
, (11.70)

where µ = µs+µp. Let P be a characteristic pressure scale, L a characteristic length scale, L/T0 a characteristic
velocity scale. The non-dimensional version of equation (11.70) is

τ + ϵ
▽
τ =

µ

PT0

(
γ̇ + ϵ

µs

µ

▽
γ̇

)
, (11.71)

where ϵ = λ/T0. Expanding in this parameter, we may write

τ = τ (0) + ϵτ (1) +O(ϵ2). (11.72)

Substituting this into the Oldroyd B model, we recover a Newtonian constitutive law to leading order,

τ (0) =
µ

PT0
γ̇, and τ (1) = −▽

τ
(0)

+
µs

PT0

▽
γ̇ = − µp

PT0

▽
γ̇. (11.73)

Putting the dimensions back in, we have

τ = µγ̇ − λµp

▽
γ̇. (11.74)

This is an example of a second-order fluid.

Second-order fluid: The simplest class of equations for viscoelastic solutions involves the expression of the
stress tensor as a sum of all admissible combinations of the velocity gradient tensor. Depending on the highest
algebraic power of the velocity gradient tensor involved, they are called the second-order fluid, third-order fluid,
etc. For example, the deviatoric stress of the second-order fluid is given by

τ = µγ̇ + b2
▽
γ̇ + b11γ̇ · γ̇, (11.75)

where b2, b11 are material constants.

Returning back to our Oldroyd B model, the weakly non-linear expansion is a second-order fluid with
material parameters b2 = −λµp, b11 = 0.
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11.4.6 Rod climbing for a second-order fluid

For an Oldroyd B fluid we showed that there is a normal stress difference in a shear flow. In this section we
will determine the steady free surface of a weakly non-linear second-order fluid caused by a rod of radius r = a
rotating at a frequency Ω in the fluid. Flow is purely in the azimuthal direction so we write u = (0, v(r), 0) in
cylindrical polars.

The flow is weakly non-linear so to leading order, the fluid behaves like a Newtonian fluid where γ̇rθ is
the only non-zero strain-rate component. In terms of the deviatoric stress components, taking P to be a
characteristic stress scale, τrθ(r) ∼ O(P ) and τrr(r), τθθ(r) ∼ O(ϵP ) with pressure p(r, z) ∼ O(P ). The leading
order momentum equations give

0 =
∂

∂r
(Trθ) +

2

r
Trθ =

1

r2
∂

∂r

(
r2Trθ

)
, 0 =

∂Tzz
∂z

− ρg. (11.76)

We can use these to solve for the azimuthal component of the velocity. The leading order r-momentum equation
gives ∂p/∂r = 0. The r-momentum equation at order O(λ/T0) can be used to calculate the higher order
components of the stress

0 =
∂Trr
∂r

+
Trr − Tθθ

r
. (11.77)

For the leading order balance, the fluid has a Newtonian constitutive law:

γ̇rθ = r
d

dr

(v
r

)
, Trθ = µγ̇rθ ⇒ Trθ =

A

r2
=

d

dr

(v
r

)
(11.78)

Integrating and applying boundary conditions v(a) = Ωa, v → 0 as r → ∞, gives

v =
Ωa2

r
, γ̇rθ = r

d

dr

(v
r

)
= −2Ωa2

r2
. (11.79)

The vertical component of the Stokes equation gives a hydrostatic balance

0 =
∂Tzz
∂z

− ρg ⇒ p = ρg(h(r)− z). (11.80)

We now consider the second-order contribution to the stress. Using the second-order fluid model, we have

Trθ = µγ̇rθ, Trr = −p+ b11γ̇
2
rθ, Tθθ = −p− 2b2γ̇

2
rθ + b11γ̇

2
rθ, Tzz = −p. (11.81)

since (
▽
γ̇)rr = 0, (

▽
γ̇)θθ = −2γ̇2rθ. Substituting into the r-momentum balance gives

∂Trr
∂r

+
2b2γ̇

2
rθ

r
= 0 ⇒ −p+ b11γ̇

2
rθ =

b2
2
γ̇2rθ + f(z) (11.82)

− ρg(h(r)− z) + (b11 − b2/2)γ̇
2
rθ = f(z). (11.83)

Choosing f(z) = ρgz, we arrive at

h(r) =
1

ρg

(
b11 −

b2
2

)
γ̇2rθ. (11.84)

Referring back to the material parameters for the Oldroyd B model, we see the surface has height

h(r) =
2λµpΩ

2a4

ρgr4
. (11.85)

Hence, for an Oldroyd B model, rod climbing occurs.

11.4.7 Words of caution

1. The linear Maxwell model is not objective
The model is not frame invariant so none of the conclusions drawn from studying the model can be
guaranteed to be physical.
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2. Time-dependent flows in weakly non-linear viscoelastic fluids are unstable
Consider the second-order fluid model

τ = µγ̇ + b2
▽
γ̇ + b11γ̇ · γ̇ (11.86)

in a two-dimensional shear flow u = (u(y, t), 0) in a channel 0 ≤ y ≤ h. From momentum balance we have

ρ
∂u

∂t
=
∂Txy
∂y

≡ ∂τxy
∂y

. (11.87)

From the constitutive law, the deviatoric stress τxy is

τxy = µ
∂u

∂y
+ b2

∂

∂t

∂u

∂y
. (11.88)

These two can be combined to give

ρ
∂u

∂t
= µ

∂2u

∂y2
+ b2

∂

∂t

∂2u

∂y2
. (11.89)

Taking no-slip boundary conditions at the walls of a channel located at y = 0 and y = h, we write the
flow velocity as a Fourier sine series:

u(y, t) = Σ∞
m=1ume

αmt sin
(mπy

h

)
. (11.90)

Substituting this into the above equation and rearranging, we find growth rates αm

αm = − µ

b2 +
ρh2

(mπ)2

. (11.91)

For polymer solutions b2 is typically negative (recall its value based on the Oldroyd B model, b2 = −λµp),
so that αm is positive for sufficiently large m. This implies that a steady shear flow of a second-order fluid
is unstable to short-wavelength perturbations and cannot be realized. In the case of negligible inertia,
achieved in the above by setting ρ = 0, this predicts that all Fourier modes are unstable. The implications
of this result are profound: it shows that an approximation of slow flows, or, in other words, Taylor
expansions of the stress in terms of the relaxation time cannot be used in time-dependent flows where any
shear component would result locally in a linear instability and exponential growth of the stress. Hence,
the second-order fluid and similar approximations should generally not be used to study time-dependent
flows!



Chapter 12

Hydrodynamic Instability

Many steady lamina flows at high Re ≫ 1 are unstable - they can often break down into turbulent-time-
dependent flows with many spatial scales. The idea is to start with a steady base flow and add small perturba-
tions. We will then look to see if these perturbations grow or decay. We will focus on linearised perturbations
so ignore non-linear terms such as quadratic and higher orders. This is called a linear stability analysis. In
particular, in this chapter we will consider two instabilities: the Kelvin-Helmholtz instability and the Rayleigh-
Plateau instability. Low Re ≪ 1 can also be unstable. We will show this by considering the viscous analogue
of the Rayleigh-Plateau instability.

12.1 The Kelvin-Helmholtz Instability

In this section we consider the Kelvin-Helmholtz instability of plane-parallel shear flow. It is this instability
that is responsible for patterns observed in clouds when two air volumes move past each other with different
horizontal velocities, see figure 12.1.

Base state
Let’s consider a plane-parallel shear flow with a velocity profile that has a tangential discontinuity:

u = (U1, 0) for y > 0 and u = (U2, 0) for y < 0, (12.1)

see figure 12.2. We will ignore the thin viscous boundary layer which smoothes out the velocity discontinuity.
The base state is a stationary solution of Euler’s equation.

Perturbed state
We set up a perturbation to the system by perturbing the interface between the two layers. We are ignoring
viscosity so the flow is inviscid. The initial condition is irrotational so the flow must be irrotational for all time.
Hence, the perturbations will be of the form û = ∇ϕ for potential flow:

u = (U1, 0) +∇ϕ1 for y > η and u = (U2, 0) +∇ϕ2 for y < η, (12.2)

where η(x, t) is the perturbed interface and the perturbed pressure is p = p0 + p1 for y > η and p = p0 + p2 for

Figure 12.1: (a) Kelvin-Helmholtz instability marked by a cloud located at the interface of two air volumes
moving with different horizontal velocities.

117
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Figure 12.2: Sketch of a shear flow with a perturbation at the interface.

y < η. From mass conservation ∇ · u = 0 we have

∇2ϕ1 = 0 for y > η and ∇2ϕ2 = 0 for y < η (12.3)

There are boundary conditions at the interface and at infinity. At infinity we have the perturbations decaying
and the pressure tending to a constant p0. Hence

ϕ1, ϕ2 → 0 and p→ p0 as y → ±∞. (12.4)

At the interface we have kinematic and dynamic boundary conditions. Our kinematic boundary condition states
that y = η(x, t) remains a material surface, i.e. Dt(η − y) = 0:

∂

∂t
(η − y) + (u ·∇)(η − y) = 0 (12.5)

∂η

∂t
+

(
U +

∂ϕ

∂x

)
∂η

∂x
− ∂ϕ

∂y
=0 (12.6)

∂η

∂t
+ U

∂η

∂x
− ∂ϕ

∂y
=0 at y = η, (12.7)

where we have only kept terms linear in the perturbation variables. To simplify the boundary condition further
we expand about the interface y = η using Taylor series

∂ϕ

∂y

∣∣∣∣
y=η

=
∂ϕ

∂y

∣∣∣∣
y=0

+ η
∂2ϕ

∂y2

∣∣∣∣
y=0

+
1

2
η2

∂3ϕ

∂y3

∣∣∣∣
y=0

+ ... (12.8)

We can ignore all but the first term as the others are quadratic or higher order. The two boundary conditions
are then

∂η

∂t
+ U1

∂η

∂x
=

∂ϕ1
∂y

∣∣∣∣
y=0+

(12.9)

∂η

∂t
+ U2

∂η

∂x
=

∂ϕ2
∂y

∣∣∣∣
y=0−

. (12.10)

N.B. because of the discontinuity in the base state, the perturbation to the vertical velocity ∂ϕ/∂y is not
continuous at y = 0. The dynamic boundary condition for an inviscid flow gives that the pressure must be
continuous at y = η, i.e. p1 = p2. To obtain the pressure at the interface we apply Bernoulli’s equation for a
time-dependent irrotational flow:

ρ
∂ϕ

∂t
+

1

2
ρ|u|2 + p+ ρgy = f(t) at y = η, (12.11)

where |u|2 = U2+2U∂ϕ/∂x+ |∇ϕ|2. After expanding about the interface y = η using Taylor series, Bernoulli’s
equation gives

∂ϕ1
∂t

+ U1
∂ϕ1
∂x

=
∂ϕ2
∂t

+ U2
∂ϕ2
∂x

. (12.12)

N.B. we have assumed the density of the two layers is the same, ρ1 = ρ2 = ρ, we have taken f(t) = 1
2U

2
1,2 + p0

from the far field conditions, and we have ignored the influence of gravity.

The governing equations involve ∂/∂x, ∂/∂t and no special values of x, t (unlike ∂/∂y with special value
y = 0), so we can Fourier transform in x, t and look for perturbations of the form

eikx+σt, (12.13)
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with wavenumber k (wavelength 2π/k) and growth rate σ, which might be complex. Re(σ) > 0 gives growth
and Im(σ) gives propagation. Let the interface be of the form

η(x, t) = Aeikx+σt, (12.14)

with A constant, and velocity potentials

ϕ1 = ϕ̂1(y)e
ikx+σt, ϕ2 = ϕ̂2(y)e

ikx+σt. (12.15)

Substituting this form into Laplace’s equation gives

∇2ϕ = 0 ⇒ −k2ϕ̂eikx+σt +
∂2ϕ̂

∂y2
eikx+σt = 0 ⇒ ϕ̂ = e±ky. (12.16)

Applying boundary conditions at ±∞, the velocity potentials are then

ϕ1 = Beikx+σte−ky for y > η and ϕ2 = Ceikx+σteky for y < η. (12.17)

Using kinematic conditions (12.9-12.10) and dynamic boundary condition (12.12) we have three equations
involving A, B, C and σ as a function of the wavenumber k:

(σ + ikU1)A = − kB (12.18)

(σ + ikU2)A = kC (12.19)

(σ + ikU1)B =(σ + ikU2)C (12.20)

⇒ σ = − ik(U1 + U2)

2
± k(U1 − U2)

2
. (12.21)

Hence, the disturbance varies as

eik[x−
1
2 (U1+U2)]

︸ ︷︷ ︸
(1)

e±
k
2 (U1−U2)t

︸ ︷︷ ︸
(2)

, (12.22)

1. disturbance propagates at the average velocity

2. decaying and growing mode ⇒ flow is unstable because there is some growing disturbance

12.2 The Rayleigh-Plateau Instability

In this section we consider the Rayleigh-Plateau instability of a cylinder of inviscid fluid bounded by surface
tension. It is this instability that is responsible for the break up of a water thread falling from a kitchen tap,
see figure 12.3.

Base state
For the equilibrium base state we have an infinitely long quiescent (u = (ur, uθ, uz) = (0, 0, 0)) inviscid cylinder
of radius of R0, density ρ and surface tension γ, see figure 12.3. For simplicity we will ignore the influence of
gravity. The pressure in the cylinder is constant given by p0. The kinematic boundary condition at the free
surface f = r −R0 = 0, n = (1, 0, 0), is

Dtf = (∂t + (u · ∇)) f(x, t) = 0 ⇒ ∂t(R0) = 0 ⇒ R0 = const (12.23)

and the dynamic boundary condition is

[T · n]+− = γ (∇ · n)n ⇒ p0n =
γ

R0
n ⇒ p0 =

γ

R0
, (12.24)

where (∇ · n) = 1/r.

Perturbed state
We consider small axisymmetric perturbations to the cylinder of the form

R = R0 + ϵR̃eσt+ikz, (12.25)
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Figure 12.3: (a) Surface tension instability of an inviscid thread falling under gravity. (b) Plot of growth rate
σ/
√
(γ/ρR3

0) against wavenumber kR0.

where σ is the growth rate of the instability, and k is the wavenumber along the cylinder (z-direction) and the
amplitude ϵ≪ R0. In addition, we write perturbations to the velocities and pressure in the form

(ur, uz, p) = (0, 0, p0) + ϵ(ũr(r), ũz(r), p̃(r))e
σt+ikz, (12.26)

Because the perturbation is small relative to the base state, the governing equations can be linearised. Substi-
tuting these perturbation fields into the conservation of momentum equations and only keeping terms of O(ϵ)
we have

ρ
∂ur
∂t

= − ∂p

∂r
, (12.27)

ρ
∂uz
∂t

= − ∂p

∂z
, (12.28)

where we have neglected non-linear terms u · ∇u ∼ O(ϵ2). N.B. for an inviscid cylinder µ = 0. In a similar
manner, mass conservation gives

1

r

∂

∂r
(urr) +

∂uz
∂z

= 0. (12.29)

Substituting the form of the perturbation (12.26) into these equations gives a set of coupled ODEs for (ũr, ũz, p̃)

ρσũr = − dp̃

dr
(12.30)

ρσũz = − ikp̃ (12.31)

dũr
dr

+
ũr
r

+ ikũz =0. (12.32)

Rearranging these equations gives a second order ODE for ũr:

r2
d2ũr
dr2

+ r
dũr
dr

− (1 + (kr)2)ũr = 0. (12.33)

This corresponds to the modified Bessel Equation of order 1, whose solutions may be written in terms of the
modified Bessel functions of the first and second kind, respectively, I1(kr) and K1(kr).
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A quick note on modified Bessel functions. Iα(x) and Kα(x) are the two linearly independent solutions to
the modified Bessel’s equation

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0. (12.34)

Iα and Kα are exponentially growing and decaying functions, respectively, with properties Iα(x),Kα(x) > 0 for
x > 0, Iα → 0 as x→ 0 for α > 0 and Kα → ∞ diverges as x→ 0. Iα also has the property that I ′0(x) = I1(x)
and (xI1(x))

′ = xI0(x).

Since we want a well-behaved solution at r = 0 we have

ũr = AI1(kr), (12.35)

where A is a constant to be determined using boundary conditions. Using the properties of the modified Bessel
functions as stated above, we can also write

p̃ = −Aρσ
k

I0(kr) and ũz = − ik

ρσ
p̃. (12.36)

We can now apply the kinematic and dynamic boundary conditions to the perturbed system. The linearised
kinematic boundary condition gives

ur|r=R0 = Rt ⇒ A =
R̃σ

I1(kR0)
. (12.37)

Similarily, for the linearised dynamic boundary condition

n̂ =
∇(r −R)

|∇(r −R)| ≃ (1, 0,−ϵR̃ikeσt+ikz) ⇒ ∇ · n̂|r=R0
≃ 1

R0
− ϵR̃

R2
0

(1− k2R2
0)e

σt+ikz (12.38)

p0 + ϵp̃|r=R0e
σt+ikz = γ

(
1

R0
− ϵR̃

R2
0

(1− k2R2
0)e

σt+ikz

)
⇒ p̃|r=R0 = − R̃γ

R2
0

(1− k2R2
0). (12.39)

Substituting in the solution for the perturbed pressure gives a dispersion relation for the growth rate σ:

σ2 =
kγ

ρR2
0

I1(kR0)

I0(kR0)
(1− k2R2

0) =
kR0γ

ρR3
0

I1(kR0)

I0(kR0)
(1− k2R2

0) (12.40)

For the perturbation to grow we require the growth rate to be real (and positive). This is only the case when
kR0 < 1, since I1(kR0), I0(kR0) > 0. Hence, the cylinder needs to be thinner than 1/k for the mode with
wavenumber k to be unstable. In other words, the cylinder is unstable to disturbances whose wavelengths
exceed the circumference of the cylinder. There exists a maximum growth rate in the interval 0 < kR0 < 1, see
figure 12.3. Numerically, we find this occurs when

kR0 ≃ 0.697, λmax ≃ 9.02R0, (12.41)

where λmax is the corresponding wavelength that grows most quickly. This corresponds to a timescale of breakup
of

t ∼ 1

σmax
≃ 2.91

√
ρR3

0

γ
. (12.42)

12.3 The Rayleigh Instability

In this section we consider the Rayleigh instability of a cylinder of viscous fluid bounded by surface tension.

Base state
The bases state is the same as in the inviscid case, with an infinitely long quiescent cylinder (u = (ur, uθ, uz) =
(0, 0, 0)) of constant radius R0, density ρ, viscosity µ, surface tension γ and pressure p0 = γ/R0.

Perturbed state
We consider small axisymmetric perturbations to the cylinder of the form

R = R0 + ϵR̃eσt+ikz, (12.43)
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where σ is the growth rate of the instability, and k is the wavenumber along the cylinder (z-direction) and the
amplitude ϵ≪ R0. In addition, we write perturbations to the velocities and pressure in the form

(ur, uz, p) = (0, 0, p0) + ϵ(ũr(r), ũz(r), p̃(r))e
σt+ikz. (12.44)

The kinematic condition gives ũr|r=R0 = σR̃, with curvature

∇ · n̂|r=R0 ≃ 1

R0
− ϵR̃

R2
0

(1− k2R2
0)e

σt+ikz. (12.45)

Looking at final term in the curvature, we can see that the thread is stabilised by axial curvature, and destabilised
by azimuthal curvature. Balancing these two terms shows that the system is unstable to long wavelengths
k2R2

0 < 1. From the dynamic boundary condition we have a balance of tangential and normal stress at the
interface. For the tangential stress [n×T · n]+− = 0 we get

∂ur
∂z

+
∂uz
∂r

= 0 ⇒ ikũr +
dũz
dr

, (12.46)

on r = R0. For the normal stress [n ·T · n]+− = γ(∇ · n) we get

−p+ 2µ
∂ur
∂r

= γ(∇ · n) ⇒ −p̃+ 2µ
∂ũr
∂r

=
γR̃

R2
0

(1− k2R2
0) (12.47)

on r = R0.

Governing equations
To solve for the Stokes flow inside the cylinder we want axisymmetric harmonic functions ∝ eikz. Using the
Papkovich-Neuber representation, we write harmonic functions

χ = χ̂(r)eikz+σt, Φ = Φ̂eikz+σt = (Φ̂r(r), 0, Φ̂z(r))e
ikz+σt. (12.48)

∇2χ = 0 ⇒ r2
d2χ̂

dr2
+ r

dχ̂

dr
− k2r2χ̂ = 0. (12.49)

You will recognise this as the modified Bessel’s Equation of order 0. We want the solution to be well-behaved
at r = 0 so χ̂/2µ = AI0(kr). Similarly, we have

∇2Φ = 0 ⇒ ∇2(Φ̂re
ikz+σt)− Φ̂re

ikz+σt/r2 = 0, ∇2(Φ̂ze
ikz+σt) = 0. (12.50)

Therefore, we have Φ̂r/2µ = BI1(kr) and Φ̂z/2µ = BI0(kr). We set C = 0 otherwise ∇(x ·Φ) has a term ∝ z.
Substituting into the PN representation we have

2µu = ∇(x ·Φ+ χ)− 2Φ (12.51)

= ∇(rΦ̂re
ikz+σt + χ̂eikz+σt)− 2Φeikz+σt (12.52)

2µũr = (rΦ̂r + χ̂)′ − 2Φ̂r (12.53)

ũr = [BrI1(kr) +AI0(kr)]
′ − 2BI1(kr) (12.54)

= AkI1(kr) +BkrI0(kr)− 2BI1(kr) (12.55)

2µũz = (rΦ̂r + χ̂)ik (12.56)

ũz = (BrI1(kr) +AI0(kr))ik, (12.57)

together with the pressure

p = ∇ ·Φ ⇒ p̃ =
1

r

d

dr

(
rΦ̂r

)
=

2µB

r
(rI1(kr))

′
= 2µBI0(kr), (12.58)

where we have used properties I ′0(x) = I1(x) and (xI1(x))
′ = xI0(x). Substituting the form of the pressure,

radial and vertical velocity into the kinematic, and dynamic boundary conditions (tangential and normal stress
balance) gives dispersion relation

σ =
γ

2µR0
(1− k2R2

0)
[I1(kR0)]

2

k2R2
0[I0(kR0)]2 − (1 + k2R2

0)[I1(kR0)]2
(12.59)
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(Lord Rayleigh, 1892). Expanding around x = 0 (I0(x) ∼ 1 − x2/4, I1(x) ∼ x/2 + x3/16), we see that the
most unstable disturbance is at k = 0, where σ = γ/6µR0, infinite wavelength since this minimises the internal
deformation. From the form of the dispersion relation we can see that the viscosity does not influence which
wavelengths will be unstable, only acts to change the magnitude of the growth rate.

To understand when inertia can be neglected we will go through a scaling argument. To do so we will
consider kR0 = O(1) so the wavelength scales like the radius of the cylinder and there is only one length scale
in the problem. Taking velocity scale U , lengthscale R0 and timescale 1/σ, we have

µU

R0
∼ p ∼ γ

R0
, U ∼ R0σ, σ ∼ γ

µR0
. (12.60)

Balancing terms in Navier-Stokes equations, we can neglect inertia provided

ρU

T
≪ µU

R2
0

⇒ ργR0

µ2
≪ 1. (12.61)

From this, we can define Ohnesorge number Oh = µ/
√
ργR0 that relates viscous forces to inertial and surface

forces. For low Oh (inertial), the time scale of breakup is tbreakup ∼ (ρR3
0/γ)

1/2. At high Oh (viscous), the
time scale of breakup is tbreakup ∼ µR0/γ.
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Chapter 13

Linear waves and instabilities

13.1 Interfacial waves and instabilities

This chapter presents a unified treatment of gravity-capillary wave, Rayleigh-Taylor instability and Kelvin-
Helmholtz instability.

Consider an infinitely deep pool of static water below an infinite atmosphere of air, with the wind blowing at
speed U . (Here water and air should be considered merely as labels for the two fluids; the analysis applies equally
well to any two immiscible fluids.) Gravity g acts along the negative y-axis of the two-dimensional Cartesian
coordinate system, pointing towards water. The interface, which is taken along the x-axis, is perpendicular
to gravity and has surface tension σ. While the interface is initially flat, at t = 0 the action of an impulsive
conservative force perturbs the interface shape to the curve given by y = h(x, t) and sets up a flow in the two
fluids. This analysis is about the subsequent development of the interface shape and the accompanying flow.
Figure 13.1 shows the configuration schematically. Water has density ρw and the air has density ρa. Both fluids
are assumed to be inviscid and incompressible.

13.1.1 The governing equations

The equations governing the flow and interface shape are as follows. Because both the static water and uniformly
flowing air initially lack vorticity, and viscosity and non-conservative forces needed for generating vorticity in
the flow are absent, the flow remains irrotational in both fluids.

1. Air: The fluid velocity ua, the velocity potential ϕa and the fluid pressure pa satisfy

ua = ∇ϕa, and ∇ · ua = 0 → ∇2ϕa = 0, (13.1a)

ρa

(
∂ϕa
∂t

+
1

2
|∇ϕa|2

)
+ pa + ρagy = c = a constant, (13.1b)

where (13.1a) represents conservation of mass and (13.1b) conservation of meomentum in the form of
Bernoulli equation for unsteady potential flow, as described in (5.11) from §5.2.2.

2. Water: Denoting the water velocity, velocity potential and pressure by uw, ϕw and pw, the equations
governing its flow analogous to the ones in the air are

uw = ∇ϕw, and ∇ · uw = 0 → ∇2ϕw = 0, (13.2a)

ρw

(
∂ϕw
∂t

+
1

2
|∇ϕw|2

)
+ pw + ρwgy = d = another constant. (13.2b)

3. Dynamic boundary condition: At the interface, the force per unit area exerted from the two fluids
must add up to the unbalanced force due to Laplace pressure (Refer to: Chapter on surface tension) on
the interface. Mathematically, this amounts to the boundary condition at y = h as

pa = pw + σκ, where κ =

(
∂2h/∂x2

1 + (∂h/∂x)
3/2

)
= interface mean curvature. (13.3)
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Air

Water

Interface

Figure 13.1: Schematic showing two infinitely deep layers of air and water with an interface.

This condition imposes momentum balance over the interface and ensures that forces are transmitted
appropriately across it.

4. Kinematic boundary condition: The interface moves with the fluid(s) or, in other words, the interface
is a “material property”. The corresponding mathematical statement is

D

Dt
(h(x, t)− y) = 0.

When the material derivative is expanded and the velocity of the two fluids is substituted, the kinematic
boundary condition becomes

∂h

∂t
+
∂ϕa
∂x

∂h

∂x
=
∂ϕa
∂y

at y = h, and (13.4a)

∂h

∂t
+
∂ϕw
∂x

∂h

∂x
=
∂ϕw
∂y

at y = h, (13.4b)

where (13.4a) uses the air velocity and (13.4b) uses the water velocity.

Equations (13.1-13.4) constitute the governing equations for the air-water-interface dynamics.

13.1.2 Steady state and linearization

A trivial steady state satisfies of the governing equations:

ua = Uex, ϕa = Ux, pa = c− ρagy −
1

2
ρaU

2 , (13.5a)

uw = 0, ϕw = 0, pw = d− ρwgy, (13.5b)

h(x, t) = 0. (13.5c)

This flow corresponds to a uniform flow in the air, no flow in the water and a flat interface. The configuration
is perturbed slightly as

ua = Uex + ϵu′
a, ϕa = Ux+ ϵϕ′a, pa = ϵp′a + c− ρagy −

1

2
ρaU

2 , (13.6a)

uw = 0+ ϵu′
w, ϕw = 0 + ϕ′w, pw = ϵp′w + d− ρwgy, (13.6b)

h(x, t) = 0 + ϵh′(x, t). (13.6c)
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Here ϵ parameterizes the size of the perturbation, and the functions decorated with a prime denote a perturbation
to the unprimed version of the function. This transformation of the dependent variables adds little to the analysis
by itself, except when the size of the perturbation is assumed to be small. Mathematically, this assumption
implies a vanishingly small ϵ and leads to the process of linearization as follows.

Substituting (13.6) in the governing equations (13.1-13.4) and canceling a factor of ϵ, and dropping the
prime decoration leads to

ua = ∇ϕa, and ∇ · ua = 0 → ∇2ϕa = 0, (13.7a)

ρa

(
∂ϕa
∂t

+ U
∂ϕa
∂x

+
ϵ

2
|∇ϕa|2

)
+ pa = 0 at y = ϵh, (13.7b)

from (13.1),

uw = ∇ϕw, and ∇ · uw = 0 → ∇2ϕw = 0, (13.8a)

ρw

(
∂ϕw
∂t

+
ϵ

2
|∇ϕw|2

)
+ pw + ρwgh = 0 at y = ϵh, (13.8b)

from (13.2),

pa − ρagh = pw − ρwgh+ σ
∂2h/∂x2

(1 + ϵ2(∂h/∂x)2)
3/2

at y = ϵh, (13.9)

from (13.3), and

∂h

∂t
+ U

∂h

∂x
+ ϵ

∂ϕa
∂x

∂h

∂x
=
∂ϕa
∂y

at y = ϵh, and (13.10a)

∂h

∂t
+ ϵ

∂ϕw
∂x

∂h

∂x
=
∂ϕw
∂y

at y = ϵh, (13.10b)

from (13.4). Equations (13.7-13.10) are in every way equivalent to (13.1-13.4) so far. Now we apply the defining
step of linearization, the limit os vanishingly small ϵ. Substituting this limit into (13.7-13.10) yields

ua = ∇ϕa, and ∇ · ua = 0 → ∇2ϕa = 0, (13.11a)

ρa

(
∂ϕa
∂t

+ U
∂ϕa
∂x

)
+ pa = 0 at y = 0, (13.11b)

from (13.7),

uw = ∇ϕw, and ∇ · uw = 0 → ∇2ϕw = 0, (13.12a)

ρw

(
∂ϕw
∂t

)
+ pw = 0 at y = 0, (13.12b)

from (13.8),

pa − ρagh = pw − ρwgh+ σ
∂2h

∂x2
at y = 0, (13.13)

from (13.9), and

∂h

∂t
+ U

∂h

∂x
=
∂ϕa
∂y

at y = 0 and (13.14a)

∂h

∂t
=
∂ϕw
∂y

at y = 0, (13.14b)

from (13.10). A defining feature of the resulting (13.11-13.14) is that they are linear in the dependent variables.
Hence this process of making infinitesimally small amplitude perturbations is called linearization. Also note,
how the boundary conditions are now imposed at y = 0 instead of the exact interface location y = ϵh.

13.1.3 Fourier transform

The most convenient way to interpret the linear equations (13.11-13.14) is to identify the directions along which
translational invariance applies and perform a Fourier transform along them. In this case, the physical system
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and the corresponding mathematical model given by (13.11-13.14) is translationally invariant along x (but not
y because of the presence of the interface). A shift of the origin along x does not change the equations, but a
shift along y does through a change in the nominal position of the interface. Thus, we will perform a Fourier
transform of (13.11-13.14) along the x axis.

For this purpose, let us define the transformed variable ϕ̂ decorated by a caret for the untransformed
undecorated variable ϕ

ϕ̂(k, y, t) =
1

2π

∫ ∞

−∞
ϕ(x, y, t)e−ikx dx, and (13.15a)

ϕ(x, y, t) =

∫ ∞

−∞
ϕ̂(k, y, t)eikx dk. (13.15b)

Here (13.15a) is the forward Fourier transform and (13.15b) is the inverse transform. The transform is a function
of the variable k, which is called the wave number. And interpretation of (13.15b) is that the function in the
physical space ϕ(x, y, t) is being written as a linear combination of the sinusoids, i.e. eikx, of wavenumber k

(equivalently wavelength 2π/k) with amplitude ϕ̂(k, y, t). Thus the forward transform (13.15a) decomposes
a given function into its components and deduces the amplitude of the sinusoid with wavelength 2π/k. The
amplitudes are in general complex, which accounts for the sine and the cosine part of the sinusoid. However,
because the variable ϕ(x, y, t) in the physical space is real, the Fourier transformed amplitude ϕ̂(k, y, t) satisfies

ϕ̂(−k, y, t) = ϕ̂∗(k, y, t), where the asterisk denotes complex conjugation.

A property of the Fourier transform used in this analysis is the relation between the Fourier transform of
functions and its derivatives. It may be readily verified using integration by parts that

ikϕ̂(k, y, t) =
1

2π

∫ ∞

−∞

∂ϕ(x, y, t)

∂x
e−ikx dx. (13.16)

Loosely speaking, differentiation with respect to x in the real space is converted to a factor of ik is Fourier
transformed space.

Fourier transform of (13.11-13.14) and dropping the caret decoration yields

ua = ikϕa, va =
∂ϕa
∂y

, and ikua +
∂va
∂y

= 0 →
(
∂2

∂y2
− k2

)
ϕa = 0, (13.17a)

ρa

(
∂ϕa
∂t

+ ikUϕa

)
+ pa = 0 at y = 0, (13.17b)

from (13.11),

uw = ikϕw, vw =
∂ϕw
∂y

, and ikuw +
∂vw
∂y

= 0 →
(
∂2

∂y2
− k2

)
ϕw = 0, (13.18a)

ρw
∂ϕw
∂t

+ pw = 0 at y = 0, (13.18b)

from (13.12),

pa − ρagh = pw − ρwhg − σk2h at y = 0, (13.19)

from (13.13), and

∂h

∂t
+ ikUh =

∂ϕa
∂y

at y = 0 and (13.20a)

∂h

∂t
=
∂ϕw
∂y

at y = 0, (13.20b)

from (13.14). Equations (13.17-13.20) are the Fourier transformed versions governing the evolution of the
perturbation. Notably, the amplitudes ϕa, ϕw, pa, pw and h with wavenumber k evolve independently of
other wavenumbers, as inferred from the fact that (13.17-13.20) do not couple the wavenumber k to any other
wavenumber. This demonstrates that a sinusoidal perturbation with wavenumber k evolves in time indepen-
dently of ever other wavenumber that may comprise the general perturbation. Because the most general pertur-
bation can always be decomposed into its constituent sinusoids using the Fourier transform, each wavenumber
then evolved in time independently, and later recomposed using the inverse Fourier transform. Thus, it suffices
to study the evolution of each wavenumber separately.
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(Sinusoids are normal modes – i.e. shape functions which decouple a linear operator – for translationally
invariant systems. If the system of interest is not translationally invariant, the normal modes for that system
may be deduced by solving for the eigenfunctions of the underlying linear operator. Because the process of
investigating the evolution of small perturbation leads to linear equations, determining normal modes of the
underlying linear operators are a common operation in the analysis of waves and instabilities.)

13.1.4 Solution to Laplace equation

The solution to (13.17a) for ϕa and (13.18a) for ϕw is

ϕa = Ae−|k|y +Be|k|y for y > 0 and (13.21a)

ϕw = Ce|k|y +De−|k|y for y < 0, (13.21b)

where A, B, C and D are constants of integration, themselves functions of k and t. Now we apply the
conditions of stagnancy deep into the water layer, and uniform flow high up into the air layer. This implies
that the perturbation to velocity perturbations decay as |y| → ∞. This is achieved by setting the constants
B = D = 0. The remaining constants A and C are determined by the boundary conditions on the interface
y = 0. Substituting in (13.17-13.20) then yields a set of five coupled equations for A, C, pa, pw and h as

pa = −ρa
(
∂

∂t
+ ikU

)
A, (13.22a)

pw = −ρw
∂C

∂t
, (13.22b)

pa − pw = −(ρw − ρa)gh− σk2h, (13.22c)
(
∂

∂t
+ ikU

)
h = −|k|A, (13.22d)

∂h

∂t
= |k|C. (13.22e)

Eliminating all the variables in favour of h yields the master equation for our analysis

ρw
∂2h

∂t2
+ ρa

(
∂

∂t
+ ikU

)2

h+
[
(ρw − ρa)g|k|+ σ|k|3

]
h = 0. (13.23)

Special cases of this equation demonstrate the various phenomena of waves and instabilities that interest us.

13.2 Waves and instabilities

We will start with deep water gravity waves to illustrate the solution and the use of the master equation (13.23).

13.2.1 Deep water gravity waves

Here we set the wind speed U = 0 and the surface tension σ = 0. Doing so reduces (13.23) to

(ρw + ρa)
∂2h

∂t2︸ ︷︷ ︸
Composite inertia

+ (ρw − ρa)g|k|h
︸ ︷︷ ︸

gravitational restoring force

= 0. (13.24)

This is a second order constant coefficient ordinary differential equation, which has the solution

h = Eeiωt + Fe−iωt, where ω = ωgrav(k) =

[(
ρw − ρa
ρw + ρa

)
g|k|

]1/2
, (13.25)

where E and F are constants of integration, possibly functions of k. Inverting the Fourier transform for h and
restoring the prime notation from 13.6 for the perturbation yields

h′(x, t) =
∫ ∞

−∞︸︷︷︸
linear combination

E(k) ei(kx+ωt)

︸ ︷︷ ︸
backward wave

+F (k) ei(kx−ωt)

︸ ︷︷ ︸
forward wave

dk. (13.26)
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As the labels indicate, the term proportional to E and F represent backward and forward propagating sinu-
soidal waves, respectively, and the integral in the inverse Fourier transform may be interpreted as forming a
linear combination of sinusoids with all wavenumbers. The functions E(k) and F (k) may be determined using

knowledge of the initial conditions, say h(x, t = 0) and
∂h

∂t
(x, t = 0).

In other words, E(k) and F (k) are the amplitudes of the sinusoids that compose the initial condition. The
sinusoids evolve independent of each other, which amounts to them propagating without changing shape. The
phase speed of wave propagation c(k) depends on the wavenumber and is given by

cgrav(k) =
ω(k)

k
=

[(
ρw − ρa
ρw + ρa

)
g

|k|

]1/2
. (13.27)

The relation c(k), or equivalently ω(k), is known as the dispersion relation because it quantifies how waves
of different wavenumbers that make the initial condition disperse. At any subsequent time, the shape of the
interface can be reconstructed by linearly combining the translated sinusoids. These are the dynamics of small
amplitude waves, specifically in this case the deep-water gravity waves. These waves are dispersive because
different wavenumbers propagate at different speeds. In particular, the phase speed decreases with increasing
|k|, as shown in Figure 13.2.

k∗
k

c∗

c(
k
)

cgrav(k) =

[(
ρw − ρa
ρw + ρa

)
g

|k|

]1/2

ccap(k) =

[(
σ|k|

ρw + ρa

)]1/2

Figure 13.2: Dispersion relation for gravity, capillary and gravity-capillary waves.

A simple dimensional argument rationalizes the propagation speed of deep-water gravity waves. For a
sinusoidal wave with amplitude h and wavelength λ = 2π/k, the excess weight of the fluid above the interface
and the buoyancy below the interface (wavy shaded region in Figure 13.3) scales as (ρw − ρa)gλh per unit
distance perpendicular to the plane of the page. This unbalanced force drives motion in the surrounding fluid,
the motion permeates a distance of O(λ) perpendicular to the interface, decaying further away from it, as shown
by the translucent region in Figure 13.3. Thus, the mass of the accelerated fluid scales as (ρa + ρw)λ

2 per unit
width perpendicular to the plane of the page. The acceleration of this mass caused by the unbalanced force
scales as h/T 2, where T is the time-scale over which motion occurs, which is to be determined. Balancing this
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inter
face

Figure 13.3: A sketch explaning the dimensional rationalization for the dispersion relation (13.27). The wavy
shaded region shows the excess fluid weight or buoyant force. The extent of the motion of the fluid arising from
the wave propagation is shown in red square. The motion decays away from the interface as shown by the gray
shading.

mass times the acceleration with the unbalanced force yields

(ρa + ρw)λ
2 × h

T 2
∼ (ρw − ρa)gλh =⇒ c ∝ 1

T
∼
[(

ρw − ρa
ρw + ρa

)
g

λ

]1/2
. (13.28)

In other words, the wave period scales inversely with λ1/2 because the accelerated mass scales with λ2 but the
driving force scales proportional to λ. The dimensional dependence on the difference and sum of the density is
also rationalized in this simple analysis.

13.2.2 Capillary and gravity-capillary waves

In this case, we set U = 0 for deep water gravity-capillary waves, and g = 0 in addition for capillary waves.
Repeating the analysis of §13.2.1, yields

ω(k) =

[(
(ρw − ρa)g|k|+ σ|k|3

ρw + ρa

)]1/2
and c(k) =



(ρw − ρa)

g

|k| + σ|k|

ρw + ρa




1/2

, (13.29)

for the gravity-capillary waves. In the capillary limit, these expressions become

ωcap(k) =

(
σ|k|3
ρw + ρa

)1/2

and ccap(k) =

(
σ|k|

ρw + ρa

)1/2

. (13.30)

A dimensional analysis interpretation of (13.30) proceeds on the same lines as the derivation of (13.28) except
for the restoring force of gravity (ρw − ρa)gλ being replaced by the Laplace pressure acting over length λ, i.e.
(σh/λ2)× λ. For capillary waves, the phase speed increases with the wavenumber |k|, as shown in Figure 13.2.

Now we turn to some salient features of gravity-capillary waves as characterized by the dispersion relation.
The expressions for the phase speeds of wave propagation for gravity, capillary, and gravity-capillary waves are
plotted in Figure 13.2. The combination of gravity and capillary forces acting on the interface has complementary
effect on the dispersion relation for long and short waves. On the one hand, the force of capillarity is strong
for short waves, i.e. waves with short wavelength corresponding to large k, and therefore the gravity-capillary
dispersion relation approaches that of capillary waves in the large-k limit. In this regime, c(k) increases with k.
On the other hand, the gravitational restoring force dominates for long wave, i.e. waves with long wavelengths
corresponding to small k, and the gravity-capillary dispersion relation approaches that of gravity waves in that
limit. In this regime, c(k) decreases with k. For intermediate values of k, the gravity-capillary phase speed has
a minimum, which can be found by setting

d

d|k| (c(k)
2) =

1

(ρw + ρa)

[
σ − (ρw − ρa)g

|k|2
]
= 0 =⇒ |k| = k∗ =

[
(ρw − ρa)g

σ

]1/2
, (13.31)
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Figure 13.4: Experimentally measured dispersion relation for the air-water interface compared with theory. The
black dots are experimentally measured values of phase speed of sinusoidal waves and the solid curve is from
(13.29) with values substituted for the air-water interface at 20◦ C. Reproduced from Behroozi and Perkins,
American Journal of Physics, 74(11), pp. 957-961with the permission of the American Association of Physics
Teachers.

for which

c(k∗) = c∗ =
[4(ρw − ρa)gσ]

1/4

(ρw + ρa)1/2
. (13.32)

To get a sense of what this calculations represent, let us substitute some numbers into the expressions. The
density of water ρw = 103 kg/m3 is much greater than the density of air ρa = 1.2 kg/m3, so ρw ± ρa ≈ ρw.
Gravity g = 9.8 m/s2 and surface tension σ = 72 × 10−3 N/m. The slowest propagating wave corresponds to
wavenumber

k∗ =

[
(ρw − ρa)g

σ

]1/2
≈ 368 m−1. (13.33)

This corresponds to a wavelength of

λ∗ =
2π

k∗
= 1.7 cm. (13.34)

Waves on the ocean surface with wavelength much larger than λ∗ are gravity waves governed by the part of
the dispersion relation that approximates (13.27), whereas waves with wavelength much shorter than λ∗ are
governed by (13.30) dominated by capillarity. The speed of the slowest propagating wave is

c∗ = 23 cm/s. (13.35)

We shall refer to these numerical values later in this chapter.

Even though the mathematical analysis so far has been based on vanishingly small perturbation amplitude,
the results of this theory apply quite well to practical situations where the amplitude of the waves is small
compared to its wavelength, as shown in Figure 13.4. However, it is not merely the applicability of the analysis
to the corresponding physical system that is of value, but also the fundamental concepts of wave propagation
and the insight into the physical processes, which cannot be gained purely from an experimental approach.
This insight ties into the subsequent analysis on instabilities and thus provides a more complete picture of the
underlying physics than possible from analyses of the phenomena considered separately.

13.2.3 Rayleigh-Taylor instability

We now turn to the mechanism of overturning of the interface when the fluid above is heavier than the fluid
below. The situation is analogous to balancing an inverted pendulum. While theoretically a pendulum may

https://doi.org/10.1119/1.2215617
https://doi.org/10.1119/1.2215617


13.2. WAVES AND INSTABILITIES 133

be balanced in an inverted configuration by having the point of support exactly below the centre of gravity of
the pendulum, it is practically impossible to achieve it. The smallest, even infinitesimal, perturbation from
a systematic or a random source in the environment, pushes the pendulum out of balance and the ensuing
dynamics naturally pushes it further away from the equilibrium. A similar dynamics occurs when attempting to
balance a semi-infinite layer of heavier fluid on top of a semi-infinite layer of lighter fluid. While the governing
equations allow such a static equilibrium to exist, even an infinitesimal perturbation away from this equilibrium
drives the interface away from its flat shape. The resulting fluid flow causes an overturning of the interface,
causing the heavier fluid to flow downwards and pushs the lighter fluid upwards. The mechanism of this
dynamics is termed as the Rayleigh-Taylor instability, after Lord Rayleigh and Geoffrey Ingram Taylor, who
first presented the essential aspects of the dynamics.

A simple way to represent heavy fluid on top of light is to transform g → −g and set U = 0 in (13.23).
(Equivalently, we can switch ρw and ρa, the only parameters that depend on the fluids.)

(ρw + ρa)
∂2h

∂t2
+
[
σ|k|3 − (ρw − ρa)g|k|

]
h = 0. (13.36)

The corresponding dispersion relation

ω(k) =

[(
σ|k|3 − (ρw − ρa)g|k|

ρw + ρa

)]1/2
and c(k) =



σ|k| − (ρw − ρa)

g

|k|
ρw + ρa




1/2

. (13.37)

Equation (13.37) only differs from (13.29) by a negative sign, which changes the qualitative character of the
dynamics. For short waves, |k| > k∗, the numerator inside the square-root for ω(k) is positive, and the wave-
propagation character of the dynamics is preserved just as for gravity-capillary waves, albeit with a modified
wave speed. But for long waves, |k| < k∗, the numerator is negative and ω(k) is purely imaginary. This
implies that the oscillatory behaviour of e±iωt in (13.25) changes to exponential growth or decay, and the wave
propagation at constant speed in (13.26) changes to exponential growth or decay of sinusoids.

We will now interpret the mathematical analysis in term of its physical mechanics. According to hydro-
dynamic stability theory, perturbations are unavoidable in any physical system. When such a perturbation is
forced on the interface, it can be decomposed into the normal modes of the system. As described in (13.26),
ϵE(k) and ϵF (k) are the infinitesimally small amplitudes of sinusoids with wavenumber k comprising the ini-
tial perturbation to the interface shape. Each of these modes evolve independently. If ω is purely imaginary,
eiωt decays exponentially, so the sinusoid proportional to F (k) decays exponentially, and thus its magnitude
remains infinitesimal. But e−iωt grows exponentially, so the sinusoid proportional to E(k) grows in magnitude,
at least until the perturbation is no longer infinitesimal. Generically, perturbations forced randomly by the
environment contain all normal modes of the system. Most of them are expected to decay, but if even a single
mode grows exponentially, this growth continues until the flat interface shape is disrupted. The shape of the
interface then more and more closely resembles the shape of the fastest growing mode. Therefore, the analysis
of hydrodyanamic stability reduces to the determination of growing normal modes.

For Rayleigh-Taylor instability, the exponential growth rate is given by

iω =

[(
(ρw − ρa)g|k| − σ|k|3

ρw + ρa

)]1/2
, 0 ≤ k ≤ k∗. (13.38)

The growth rate is zero at k = 0 and k = k∗, and positive in between. The growth is fastest for wavenumber
given by

|k| =
[
(ρw − ρa)g

3σ

]1/2
=

k∗√
3
. (13.39)

This is the fastest growing mode.

Physically, a depression in the interface displaces heavy fluid downwards with lighter fluid surrounding it.
The lighter fluid does not provide sufficient buoyancy to compensate for the weight of the heavy fluid. Similarly,
if a parcel of the lighter fluid is displaced upwards, the buoyant force on it exceeds its weight. The imbalance
in both these situations continues to push the heavier fluid downward and the lighter fluid upwards. For short
waves, the tension in the surface provides sufficient retoring force to overcome the driving force of gravity, but the
process runs away for long waves overturning the interface. The dimensional analysis version of Rayleigh-Taylor
closely parallels that of gravity-capillary waves, except gravity provides a driving force destabilizing this static
flat interface instead of a restoring force. This is the physical mechanism of the Rayleigh-Taylor instability.
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Figure 13.5: Instability mechanism for Kelvin-Helmholtz instability. In the reference frame of the wave, the
wind speed is U − c. The air flowing over the crests speed up because it has to flow through smaller space than
in the absence of the wave (blue arrows). By the Bernoulli principle, the air pressure there drops and pulls the
interface futher away from the flat shape (red arrows). Similarly, through the troughs, the flow slows down and
the pressure rises, further pushing the troughs to become deeper.

13.2.4 Kelvin-Helmholtz instability

In this case, we restore the blowing wind and retain every variable in (13.23). The interpretation is facilitated
by the substitution (ρw − ρa)g|k|+ σ|k|3 = (ρw + ρa)c

2k2 from (13.29), which leads to the the form of (13.23)
as

ρw
∂2h

∂t2
+ ρa

(
∂h

∂t
+ ikU

)2

h+ (ρw + ρa)c
2k2h = 0. (13.40)

The dispersion relation for this equation is the solution of

ρwω
2 + ρa(ω + kU)2 = (ρw + ρa)c

2k2. (13.41)

This is a quadratic equation for ω, which has the solution

ω

k
= − ρaU

ρw + ρa
±
√
c2 − U2ρwρa

(ρw + ρa)2
. (13.42)

The variable ω is real for small U if discriminant inside the square-root is positive, and sinusoids propagate at
a constant speed ω/k. However, for

U > Ucr(k) =
(
f + f−1

)
c(k), f =

√
ρw
ρa
, (13.43)

the discriminant is negative, ω is complex, and sinusoids grow exponentially. Here Ucr(k) is the critical wind
speed, which when exceeded perturbation to the interface with wavenumber k is amplified by the wind. The
smallest value for Ucr that leads to amplification of any wavenumber occurs for k = k∗, where c(k) has its
minimum value of c∗. This analysis makes the following physical prediction: on a windy day as the gusts
pick up, the first appearance of ripples spontaneously appearing on the interface corresponds to a wavenumber
k = k∗, wavelength λ = λ∗ at a wind-speed

U = Ucr(k∗) =

(
f +

1

f

)
c∗. (13.44)

For the air-water interface, using ρa ≪ ρw, this speed is

U ≈ (4ρwgσ)
1/4

ρ
1/2
a

= 6.7 m/s. (13.45)

To physically understand the mechanism underlying this mathematical analysis of exponential growth, we
go back to the expression for the air pressure in (13.22a) and (13.22d). Writing the air pressure in terms of
interface perturbation gives

pa =
ρa
|k|

(
∂

∂t
+ ikU

)2

h. (13.46)
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To imagine the influence of the blowing wind on a propagating wave, we substitute h ∝ aei(kx−kct) (here c is
the speed of propagation of the sinusoid and a its amplitude) to yield the air pressure to be

pa ∝ −ρa|k| (U − c)
2
aei(kx−kct). (13.47)

When air flows over the crests of the waves, it has the squeeze through a narrower space because of presence
of the crest reduces the space available for the air to flow. This results in a speeding up when flowing over
the crests, as shown in Figure 13.5. Similarly, the wind slows down when flowing through the troughs, also
shown in Figure 13.5. By the Bernoulli equation, the pressure is lower where the speed is faster, i.e. the crests,
and higher where the speed is slower, i.e. the troughs. This influence of the air pressure out-of-phase with the
waveform acts to amplify the interface waveform and drives the instability.

It so happens that the neglect of viscosity is tolerable for the waves and the Rayleigh-Taylor instability.
However, the uniform wind speed violates the no-slip condition on the interface. The presence of viscosity
smoothes this profile, and the effect of this modified velocity profile needs to be accounted for in the stability
analysis. This is the subject for further research for the keen student.
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